# American Institute of Mathematical Sciences

August  2007, 1(3): 321-330. doi: 10.3934/amc.2007.1.321

## Parity properties of Costas arrays defined via finite fields

 1 School of Electrical, Electronic & Mechanical Engineering, University College Dublin, Belﬁeld, Dublin 4, Ireland, Ireland 2 School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland

Received  December 2006 Revised  June 2007 Published  July 2007

A Costas array of order $n$ is an arrangement of dots and blanks into $n$ rows and $n$ columns, with exactly one dot in each row and each column, the arrangement satisfying certain specified conditions. A dot occurring in such an array is even/even if it occurs in the $i$-th row and $j$-th column, where $i$ and $j$ are both even integers, and there are similar definitions of odd/odd, even/odd and odd/even dots. Two types of Costas arrays, known as Golomb-Costas and Welch-Costas arrays, can be defined using finite fields. When $q$ is a power of an odd prime, we enumerate the number of even/even odd/odd, even/odd and odd/even dots in a Golomb-Costas array. We show that three of these numbers are equal and they differ by $\pm 1$ from the fourth. For a Welch-Costas array of order $p-1$, where $p$ is an odd prime, the four numbers above are all equal to $(p-1)/4$ when $p\equiv 1(\mod 4)$, but when $p\equiv 3(\mod 4)$, we show that the four numbers are defined in terms of the class number of the imaginary quadratic field $\mathbb Q(\sqrt{-p})$, and thus behave in a much less predictable manner.
Citation: Konstantinos Drakakis, Rod Gow, Scott Rickard. Parity properties of Costas arrays defined via finite fields. Advances in Mathematics of Communications, 2007, 1 (3) : 321-330. doi: 10.3934/amc.2007.1.321
 [1] Jonathan Jedwab, Jane Wodlinger. Structural properties of Costas arrays. Advances in Mathematics of Communications, 2014, 8 (3) : 241-256. doi: 10.3934/amc.2014.8.241 [2] Konstantinos Drakakis, Roderick Gow, Scott Rickard. Common distance vectors between Costas arrays. Advances in Mathematics of Communications, 2009, 3 (1) : 35-52. doi: 10.3934/amc.2009.3.35 [3] Konstantinos Drakakis, Francesco Iorio, Scott Rickard, John Walsh. Results of the enumeration of Costas arrays of order 29. Advances in Mathematics of Communications, 2011, 5 (3) : 547-553. doi: 10.3934/amc.2011.5.547 [4] Konstantinos Drakakis, Francesco Iorio, Scott Rickard. The enumeration of Costas arrays of order 28 and its consequences. Advances in Mathematics of Communications, 2011, 5 (1) : 69-86. doi: 10.3934/amc.2011.5.69 [5] Konstantinos Drakakis. A review of the available construction methods for Golomb rulers. Advances in Mathematics of Communications, 2009, 3 (3) : 235-250. doi: 10.3934/amc.2009.3.235 [6] Xiaolu Hou, Frédérique Oggier. Modular lattices from a variation of construction a over number fields. Advances in Mathematics of Communications, 2017, 11 (4) : 719-745. doi: 10.3934/amc.2017053 [7] Drew Fudenberg, David K. Levine. Tail probabilities for triangular arrays. Journal of Dynamics & Games, 2014, 1 (1) : 45-56. doi: 10.3934/jdg.2014.1.45 [8] María Isabel Cortez. $Z^d$ Toeplitz arrays. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 859-881. doi: 10.3934/dcds.2006.15.859 [9] Elisavet Konstantinou, Aristides Kontogeorgis. Some remarks on the construction of class polynomials. Advances in Mathematics of Communications, 2011, 5 (1) : 109-118. doi: 10.3934/amc.2011.5.109 [10] Amin Sakzad, Mohammad-Reza Sadeghi, Daniel Panario. Cycle structure of permutation functions over finite fields and their applications. Advances in Mathematics of Communications, 2012, 6 (3) : 347-361. doi: 10.3934/amc.2012.6.347 [11] Nian Li, Qiaoyu Hu. A conjecture on permutation trinomials over finite fields of characteristic two. Advances in Mathematics of Communications, 2019, 13 (3) : 505-512. doi: 10.3934/amc.2019031 [12] Domingo Gomez-Perez, Ana-Isabel Gomez, Andrew Tirkel. Arrays composed from the extended rational cycle. Advances in Mathematics of Communications, 2017, 11 (2) : 313-327. doi: 10.3934/amc.2017024 [13] Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387 [14] Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 [15] Jean-François Biasse. Subexponential time relations in the class group of large degree number fields. Advances in Mathematics of Communications, 2014, 8 (4) : 407-425. doi: 10.3934/amc.2014.8.407 [16] Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040 [17] Yuri Kifer. Ergodic theorems for nonconventional arrays and an extension of the Szemerédi theorem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2687-2716. doi: 10.3934/dcds.2018113 [18] Kai-Uwe Schmidt. The merit factor of binary arrays derived from the quadratic character. Advances in Mathematics of Communications, 2011, 5 (4) : 589-607. doi: 10.3934/amc.2011.5.589 [19] F. H. Clarke, Yu. S . Ledyaev, R. J. Stern. Proximal techniques of feedback construction. Conference Publications, 1998, 1998 (Special) : 177-194. doi: 10.3934/proc.1998.1998.177 [20] Daniele Bartoli, Adnen Sboui, Leo Storme. Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes. Advances in Mathematics of Communications, 2016, 10 (2) : 355-365. doi: 10.3934/amc.2016010

2018 Impact Factor: 0.879

## Metrics

• PDF downloads (4)
• HTML views (0)
• Cited by (1)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]