\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Symmetric designs possessing tactical decompositions

Abstract / Introduction Related Papers Cited by
  • The main aim of this paper is to construct symmetric designs with trivial automorphism groups. Being aware of the fact that an exhaustive search for parameters $(36,15,6)$ and $(41,16,6)$ is still impossible, we assume that these designs admit a tactical decomposition which would correspond to an orbit structure achieved under an action of an automorphism of order $3$. This constraint proves to be fruitful and allows us to classify simultaneously those symmetric designs with mentioned parameters which admit an automorphism of order $3$ as well as to construct new designs with a trivial automorphism group.
    Mathematics Subject Classification: Primary: 05B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    W. O. Alltop, An infinite class of $5$-designs, J. Combin. Theory Ser. A, 12 (1972), 390-395.doi: 10.1016/0097-3165(72)90104-5.

    [2]

    I. Bouyukliev, V. Fack and J. Winne, $2$-$(31,15,7)$, $2$-$(35,17,8)$ and $2$-$(36,15,6)$ designs with automorphisms of odd prime order, and their related Hadamard matrices and codes, Des. Codes Crypt., 51 (2009), 105-122.doi: 10.1007/s10623-008-9247-x.

    [3]

    D. Crnković and D. Held, Some Menon designs having $U(3,3)$ as an automorphism group, Illinois J. Math., 47 (2003), 129-139.

    [4]

    V. Ćepulić, On symmetric block designs $(40,13,4)$ with automorphisms of order $5$, Discrete Math., 128 (1994), 45-60.doi: 10.1016/0012-365X(94)90103-1.

    [5]

    D. Held, J. Hrabe de Angelis and M.-O. Pavčević, $PSp_4(3)$ as a symmetric $(36,15,6)$ design, Rend. Sem. Mat. Univ. Padova, 101 (1999), 95-98.

    [6]

    D. Held and M.-O. Pavčević, Symmetric $(79,27,9)$ design admitting a faithful action of a Frobenius group of order $39$, Europ. J. Combinatorics, 18 (1997), 409-416.doi: 10.1006/eujc.1996.0103.

    [7]

    Y. J. Ionin and T. van Trung, Symmetric designs, in "CRC Handbook of Combinatorial Designs'' (eds. C.J. Colbourn and J.H. Dinitz), 2nd edition, CRC Press, Boca Raton, FL, (2007), 110-124.

    [8]

    Z. Janko and T. van Trung, Construction of a new symmetric block design for $(78,22,6)$ with the help of tactical decompositions, J. Combin. Theory Ser. A, 40 (1985), 451-455.doi: 10.1016/0097-3165(85)90107-4.

    [9]

    P. Kaski and P. R. J. Östergärd, "Classification Algorithms for Codes and Designs,'' Springer, Berlin, 2006.

    [10]

    V. Krčadinac, Steiner $2$-designs $S(2,5,41)$ with automorphisms of order $3$, J. Combin. Math. Combin. Comput., 43 (2002), 83-99.

    [11]

    E. Lander, "Symmetric Designs: An Algebraic Approach,'' Cambridge University Press, Cambridge, 1983.doi: 10.1017/CBO9780511662164.

    [12]

    R. Mathon and A. Rosa, $2$-$(v,k,\lambda)$ designs of small order, in "CRC Handbook of Combinatorial Designs'' (eds. C.J. Colbourn and J.H. Dinitz), 2nd edition, CRC Press, Boca Raton, FL, (2007), 25-58.

    [13]

    B. D. McKay, Nauty user's guide (version 1.5), Technical Report TR-CS-90-02, Dep. Computer Science, Australian National University, 1990.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(91) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return