2011, 5(2): 395-406. doi: 10.3934/amc.2011.5.395

On the weight distribution of codes over finite rings

1. 

School of Mathematical Sciences, University College Dublin, Springfield, MO 65801-2604, United States

Received  May 2010 Revised  November 2010 Published  May 2011

Let $R>S$ be finite Frobenius rings for which there exists a trace map $T:$ S$R \rightarrow$S$R$. Let $C$f,s$:=\{x \mapsto T(\alpha x + \beta f(x)) : \alpha, \beta \in R \}$. $C$f,s is an $S$-linear subring-subcode of a left linear code over $R$. We consider functions $f$ for which the homogeneous weight distribution of $C$f,s can be computed. In particular, we give constructions of codes over integer modular rings and commutative local Frobenius that have small spectra.
Citation: Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395
References:
[1]

C. Bracken, E. Byrne, N. Markin and G. McGuire, New families of almost perfect nonlinear trinomials and multinomials,, Finite Fields Appl., 14 (2008), 703. doi: 10.1016/j.ffa.2007.11.002.

[2]

E. Byrne, M. Greferath and T. Honold, Ring geometries, two-weight codes and strongly regular graphs,, Des. Codes Crypt., 48 (2008), 1. doi: 10.1007/s10623-007-9136-8.

[3]

E. Byrne, M. Greferath, A. Kohnert and V. Skachek, New bounds for codes over finite Frobenius rings,, Des. Codes Crypt., 57 (2010), 169. doi: 10.1007/s10623-009-9359-y.

[4]

E. Byrne, M. Greferath and M. E. O'Sullivan, The linear programming bound for codes over finite Frobenius rings,, Des. Codes Crypt., 42 (2007), 289. doi: 10.1007/s10623-006-9035-4.

[5]

E. Byrne and A. Sneyd, Constructions of two-weight codes over finite rings,, in, (2010).

[6]

C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems,, Des. Codes Crypt., 15 (1998), 125. doi: 10.1023/A:1008344232130.

[7]

C. Carlet, C. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes,, IEEE Trans. Inform. Theory, 51 (2005), 2089. doi: 10.1109/TIT.2005.847722.

[8]

I. Constantinescu and W. Heise, A metric for codes over residue class rings of integers (in Russian),, Problemy Peredachi Informatsii, 33 (1997), 22.

[9]

P. Delsarte, Weights of linear codes and strongly regular normed spaces,, Discrete Math., 3 (1972), 47. doi: 10.1016/0012-365X(72)90024-6.

[10]

M. Greferath, A. Nechaev and R. Wisbauer, Finite quasi-Frobenius modules and linear codes,, J. Algebra Appl., 3 (2004), 247. doi: 10.1142/S0219498804000873.

[11]

M. Greferath and M. E. O'Sullivan, On bounds for codes over Frobenius rings under homogeneous weights,, Discrete Math., 289 (2004), 11. doi: 10.1016/j.disc.2004.10.002.

[12]

M. Greferath and S. E. Schmidt, Finite-ring combinatorics and MacWilliams equivalence theorem,, J. Combin. Theory A, 92 (2000), 17. doi: 10.1006/jcta.1999.3033.

[13]

A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbbZ_4$-linearity of Kerdock, Preparata, Goethals and related codes,, IEEE Trans. Inform. Theory, 40 (1994), 301. doi: 10.1109/18.312154.

[14]

R. C. Heimiller, Phase shift pulse codes with good periodic correlation properties,, IRE Trans. Inform. Theory, IT-7 (1961), 254. doi: 10.1109/TIT.1961.1057655.

[15]

T. Honold, Characterization of finite Frobenius rings,, Arch. Math. (Basel), 76 (2001), 406.

[16]

T. Honold, Further results on homogeneous two-weight codes,, in, (2007).

[17]

T. Y. Lam, "Lectures on Modules and Rings,'', Springer-Verlag, (1999).

[18]

B. R. McDonald, Finite rings with identity,, in, (1974).

[19]

R. Raghavendran, Finite associative rings,, Compositio Math., 21 (1969), 195.

[20]

J. Yuan, C. Carlet and C. Ding, The weight distribution of a class of linear codes from perfect nonlinear functions,, IEEE Trans. Inform. Theory, 52 (2006), 712. doi: 10.1109/TIT.2005.862125.

show all references

References:
[1]

C. Bracken, E. Byrne, N. Markin and G. McGuire, New families of almost perfect nonlinear trinomials and multinomials,, Finite Fields Appl., 14 (2008), 703. doi: 10.1016/j.ffa.2007.11.002.

[2]

E. Byrne, M. Greferath and T. Honold, Ring geometries, two-weight codes and strongly regular graphs,, Des. Codes Crypt., 48 (2008), 1. doi: 10.1007/s10623-007-9136-8.

[3]

E. Byrne, M. Greferath, A. Kohnert and V. Skachek, New bounds for codes over finite Frobenius rings,, Des. Codes Crypt., 57 (2010), 169. doi: 10.1007/s10623-009-9359-y.

[4]

E. Byrne, M. Greferath and M. E. O'Sullivan, The linear programming bound for codes over finite Frobenius rings,, Des. Codes Crypt., 42 (2007), 289. doi: 10.1007/s10623-006-9035-4.

[5]

E. Byrne and A. Sneyd, Constructions of two-weight codes over finite rings,, in, (2010).

[6]

C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems,, Des. Codes Crypt., 15 (1998), 125. doi: 10.1023/A:1008344232130.

[7]

C. Carlet, C. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes,, IEEE Trans. Inform. Theory, 51 (2005), 2089. doi: 10.1109/TIT.2005.847722.

[8]

I. Constantinescu and W. Heise, A metric for codes over residue class rings of integers (in Russian),, Problemy Peredachi Informatsii, 33 (1997), 22.

[9]

P. Delsarte, Weights of linear codes and strongly regular normed spaces,, Discrete Math., 3 (1972), 47. doi: 10.1016/0012-365X(72)90024-6.

[10]

M. Greferath, A. Nechaev and R. Wisbauer, Finite quasi-Frobenius modules and linear codes,, J. Algebra Appl., 3 (2004), 247. doi: 10.1142/S0219498804000873.

[11]

M. Greferath and M. E. O'Sullivan, On bounds for codes over Frobenius rings under homogeneous weights,, Discrete Math., 289 (2004), 11. doi: 10.1016/j.disc.2004.10.002.

[12]

M. Greferath and S. E. Schmidt, Finite-ring combinatorics and MacWilliams equivalence theorem,, J. Combin. Theory A, 92 (2000), 17. doi: 10.1006/jcta.1999.3033.

[13]

A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbbZ_4$-linearity of Kerdock, Preparata, Goethals and related codes,, IEEE Trans. Inform. Theory, 40 (1994), 301. doi: 10.1109/18.312154.

[14]

R. C. Heimiller, Phase shift pulse codes with good periodic correlation properties,, IRE Trans. Inform. Theory, IT-7 (1961), 254. doi: 10.1109/TIT.1961.1057655.

[15]

T. Honold, Characterization of finite Frobenius rings,, Arch. Math. (Basel), 76 (2001), 406.

[16]

T. Honold, Further results on homogeneous two-weight codes,, in, (2007).

[17]

T. Y. Lam, "Lectures on Modules and Rings,'', Springer-Verlag, (1999).

[18]

B. R. McDonald, Finite rings with identity,, in, (1974).

[19]

R. Raghavendran, Finite associative rings,, Compositio Math., 21 (1969), 195.

[20]

J. Yuan, C. Carlet and C. Ding, The weight distribution of a class of linear codes from perfect nonlinear functions,, IEEE Trans. Inform. Theory, 52 (2006), 712. doi: 10.1109/TIT.2005.862125.

[1]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[2]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[3]

Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023

[4]

Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195

[5]

Heide Gluesing-Luerssen. Partitions of Frobenius rings induced by the homogeneous weight. Advances in Mathematics of Communications, 2014, 8 (2) : 191-207. doi: 10.3934/amc.2014.8.191

[6]

Chengju Li, Sunghan Bae, Shudi Yang. Some two-weight and three-weight linear codes. Advances in Mathematics of Communications, 2019, 13 (1) : 195-211. doi: 10.3934/amc.2019013

[7]

Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008

[8]

Yanqin Xiong, Maoan Han. Planar quasi-homogeneous polynomial systems with a given weight degree. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4015-4025. doi: 10.3934/dcds.2016.36.4015

[9]

Denis S. Krotov, Patric R. J.  Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013

[10]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[11]

Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006

[12]

Katayun Barmak, Eva Eggeling, Maria Emelianenko, Yekaterina Epshteyn, David Kinderlehrer, Richard Sharp, Shlomo Ta'asan. An entropy based theory of the grain boundary character distribution. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 427-454. doi: 10.3934/dcds.2011.30.427

[13]

Diana M. Thomas, Ashley Ciesla, James A. Levine, John G. Stevens, Corby K. Martin. A mathematical model of weight change with adaptation. Mathematical Biosciences & Engineering, 2009, 6 (4) : 873-887. doi: 10.3934/mbe.2009.6.873

[14]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[15]

Mateus Balbino Guimarães, Rodrigo da Silva Rodrigues. Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2697-2713. doi: 10.3934/cpaa.2013.12.2697

[16]

Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014

[17]

Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017

[18]

Hans-Christoph Grunau, Guido Sweers. A clamped plate with a uniform weight may change sign. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 761-766. doi: 10.3934/dcdss.2014.7.761

[19]

Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011

[20]

Christine A. Kelley, Deepak Sridhara. Eigenvalue bounds on the pseudocodeword weight of expander codes. Advances in Mathematics of Communications, 2007, 1 (3) : 287-306. doi: 10.3934/amc.2007.1.287

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]