2011, 5(1): 93-108. doi: 10.3934/amc.2011.5.93

Codes from incidence matrices and line graphs of Paley graphs

1. 

Dipartimento di Matematica, Università di Roma 'La Sapienza', I-00185 Rome, Italy

2. 

School of Mathematical Sciences, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa

Received  September 2010 Published  February 2011

We examine the $p$-ary codes from incidence matrices of Paley graphs $P(q)$ where $q\equiv 1$(mod $4$) is a prime power, and show that the codes are $[\frac{q(q-1)}{4},q-1,\frac{q-1}{2}]$2 or $[\frac{q(q-1)}{4},q,\frac{q-1}{2}]$p for $p$ odd. By finding PD-sets we show that for $q > 9$ the $p$-ary codes, for any $p$, can be used for permutation decoding for full error-correction. The binary code from the line graph of $P(q)$ is shown to be the same as the binary code from an incidence matrix for $P(q)$.
Citation: Dina Ghinelli, Jennifer D. Key. Codes from incidence matrices and line graphs of Paley graphs. Advances in Mathematics of Communications, 2011, 5 (1) : 93-108. doi: 10.3934/amc.2011.5.93
References:
[1]

E. F. Assmus, Jr. and J. D. Key, "Designs and their Codes,'', Cambridge University Press, (1992).

[2]

R. Balakrishnan and K. Ranganathan, "A Textbook of Graph Theory,'', New York, (2000).

[3]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language,, J. Symb. Comp., 24 (1997), 235. doi: 10.1006/jsco.1996.0125.

[4]

J. Cannon, A. Steel and G. White, Linear codes over finite fields,, in, (2006), 3951.

[5]

K. Chouinard, "Weight Distributions of Codes from Planes,'', Ph.D thesis, (2000).

[6]

W. Fish, J. D. Key and E. Mwambene, Binary codes of line graphs from the $n$-cube,, J. Symbolic Comput., 45 (2010), 800. doi: 10.1016/j.jsc.2010.03.012.

[7]

W. Fish, J. D. Key and E. Mwambene, Codes from the incidence matrices and line graphs of Hamming graphs,, Discrete Math., 310 (2010), 1884. doi: 10.1016/j.disc.2010.02.010.

[8]

W. Fish, J. D. Key and E. Mwambene, Codes from the incidence matrices and line graphs of Hamming graphs $H^k(n,2)$ for $k \ge 2$,, Adv. Math. Commun., ().

[9]

D. M. Gordon, Minimal permutation sets for decoding the binary Golay codes,, IEEE Trans. Inform. Theory, 28 (1982), 541. doi: 10.1109/TIT.1982.1056504.

[10]

W. C. Huffman, Codes and groups,, in, (1998), 1345.

[11]

B. Jackson, Hamilton cycles in regular 2-connected graphs,, J. Combin. Theory Ser. B, 29 (1980), 27. doi: 10.1016/0095-8956(80)90042-8.

[12]

J. D. Key, T. P. McDonough and V. C. Mavron, Partial permutation decoding for codes from finite planes,, European J. Combin., 26 (2005), 665. doi: 10.1016/j.ejc.2004.04.007.

[13]

J. D. Key, T. P. McDonough and V. C. Mavron, Information sets and partial permutation decoding for codes from finite geometries,, Finite Fields Appl., 12 (2006), 232. doi: 10.1016/j.ffa.2005.05.007.

[14]

J. D. Key, J. Moori and B. G. Rodrigues, Codes associated with triangular graphs, and permutation decoding,, Int. J. Inform. Coding Theory, 1 (2010), 334. doi: 10.1504/IJICOT.2010.032547.

[15]

J. D. Key, J. Moori and B. G. Rodrigues, Codes from incidence matrices and line graphs of symplectic graphs,, in preparation., ().

[16]

J. D. Key and B. G. Rodrigues, Codes associated with lattice graphs, and permutation decoding,, Discrete Appl. Math., 158 (2010), 1807. doi: 10.1016/j.dam.2010.07.003.

[17]

H.-J. Kroll and R. Vincenti, PD-sets related to the codes of some classical varieties,, Discrete Math., 301 (2005), 89. doi: 10.1016/j.disc.2004.11.020.

[18]

M. Lavrauw, L. Storme, P. Sziklai and G. Van de Voorde, An empty interval in the spectrum of small weight codewords in the code from points and k-spaces of $PG(n,q)$,, J. Combin. Theory Ser. A, 116 (2009), 996. doi: 10.1016/j.jcta.2008.09.004.

[19]

F. J. MacWilliams, Permutation decoding of systematic codes,, Bell System Tech. J., 43 (1964), 485.

[20]

F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'', Amsterdam, (1983).

[21]

C. S. J. A. Nash-Williams, Hamiltonian arcs and circuits,, in, (1970), 197.

[22]

J. Schönheim, On coverings,, Pacific J. Math., 14 (1964), 1405.

[23]

G. Van de Voorde, "Blocking Sets in Finite Projective Spaces and Coding Theory,'', Ph.D thesis, (2010).

[24]

H. Whitney, Congruent graphs and the connectivity of graphs,, Amer. J. Math., 54 (1932), 154. doi: 10.2307/2371086.

show all references

References:
[1]

E. F. Assmus, Jr. and J. D. Key, "Designs and their Codes,'', Cambridge University Press, (1992).

[2]

R. Balakrishnan and K. Ranganathan, "A Textbook of Graph Theory,'', New York, (2000).

[3]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language,, J. Symb. Comp., 24 (1997), 235. doi: 10.1006/jsco.1996.0125.

[4]

J. Cannon, A. Steel and G. White, Linear codes over finite fields,, in, (2006), 3951.

[5]

K. Chouinard, "Weight Distributions of Codes from Planes,'', Ph.D thesis, (2000).

[6]

W. Fish, J. D. Key and E. Mwambene, Binary codes of line graphs from the $n$-cube,, J. Symbolic Comput., 45 (2010), 800. doi: 10.1016/j.jsc.2010.03.012.

[7]

W. Fish, J. D. Key and E. Mwambene, Codes from the incidence matrices and line graphs of Hamming graphs,, Discrete Math., 310 (2010), 1884. doi: 10.1016/j.disc.2010.02.010.

[8]

W. Fish, J. D. Key and E. Mwambene, Codes from the incidence matrices and line graphs of Hamming graphs $H^k(n,2)$ for $k \ge 2$,, Adv. Math. Commun., ().

[9]

D. M. Gordon, Minimal permutation sets for decoding the binary Golay codes,, IEEE Trans. Inform. Theory, 28 (1982), 541. doi: 10.1109/TIT.1982.1056504.

[10]

W. C. Huffman, Codes and groups,, in, (1998), 1345.

[11]

B. Jackson, Hamilton cycles in regular 2-connected graphs,, J. Combin. Theory Ser. B, 29 (1980), 27. doi: 10.1016/0095-8956(80)90042-8.

[12]

J. D. Key, T. P. McDonough and V. C. Mavron, Partial permutation decoding for codes from finite planes,, European J. Combin., 26 (2005), 665. doi: 10.1016/j.ejc.2004.04.007.

[13]

J. D. Key, T. P. McDonough and V. C. Mavron, Information sets and partial permutation decoding for codes from finite geometries,, Finite Fields Appl., 12 (2006), 232. doi: 10.1016/j.ffa.2005.05.007.

[14]

J. D. Key, J. Moori and B. G. Rodrigues, Codes associated with triangular graphs, and permutation decoding,, Int. J. Inform. Coding Theory, 1 (2010), 334. doi: 10.1504/IJICOT.2010.032547.

[15]

J. D. Key, J. Moori and B. G. Rodrigues, Codes from incidence matrices and line graphs of symplectic graphs,, in preparation., ().

[16]

J. D. Key and B. G. Rodrigues, Codes associated with lattice graphs, and permutation decoding,, Discrete Appl. Math., 158 (2010), 1807. doi: 10.1016/j.dam.2010.07.003.

[17]

H.-J. Kroll and R. Vincenti, PD-sets related to the codes of some classical varieties,, Discrete Math., 301 (2005), 89. doi: 10.1016/j.disc.2004.11.020.

[18]

M. Lavrauw, L. Storme, P. Sziklai and G. Van de Voorde, An empty interval in the spectrum of small weight codewords in the code from points and k-spaces of $PG(n,q)$,, J. Combin. Theory Ser. A, 116 (2009), 996. doi: 10.1016/j.jcta.2008.09.004.

[19]

F. J. MacWilliams, Permutation decoding of systematic codes,, Bell System Tech. J., 43 (1964), 485.

[20]

F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'', Amsterdam, (1983).

[21]

C. S. J. A. Nash-Williams, Hamiltonian arcs and circuits,, in, (1970), 197.

[22]

J. Schönheim, On coverings,, Pacific J. Math., 14 (1964), 1405.

[23]

G. Van de Voorde, "Blocking Sets in Finite Projective Spaces and Coding Theory,'', Ph.D thesis, (2010).

[24]

H. Whitney, Congruent graphs and the connectivity of graphs,, Amer. J. Math., 54 (1932), 154. doi: 10.2307/2371086.

[1]

Washiela Fish, Jennifer D. Key, Eric Mwambene. Partial permutation decoding for simplex codes. Advances in Mathematics of Communications, 2012, 6 (4) : 505-516. doi: 10.3934/amc.2012.6.505

[2]

Kwankyu Lee. Decoding of differential AG codes. Advances in Mathematics of Communications, 2016, 10 (2) : 307-319. doi: 10.3934/amc.2016007

[3]

Elisa Gorla, Felice Manganiello, Joachim Rosenthal. An algebraic approach for decoding spread codes. Advances in Mathematics of Communications, 2012, 6 (4) : 443-466. doi: 10.3934/amc.2012.6.443

[4]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[5]

Srimathy Srinivasan, Andrew Thangaraj. Codes on planar Tanner graphs. Advances in Mathematics of Communications, 2012, 6 (2) : 131-163. doi: 10.3934/amc.2012.6.131

[6]

Terasan Niyomsataya, Ali Miri, Monica Nevins. Decoding affine reflection group codes with trellises. Advances in Mathematics of Communications, 2012, 6 (4) : 385-400. doi: 10.3934/amc.2012.6.385

[7]

Heide Gluesing-Luerssen, Uwe Helmke, José Ignacio Iglesias Curto. Algebraic decoding for doubly cyclic convolutional codes. Advances in Mathematics of Communications, 2010, 4 (1) : 83-99. doi: 10.3934/amc.2010.4.83

[8]

Hannes Bartz, Antonia Wachter-Zeh. Efficient decoding of interleaved subspace and Gabidulin codes beyond their unique decoding radius using Gröbner bases. Advances in Mathematics of Communications, 2018, 12 (4) : 773-804. doi: 10.3934/amc.2018046

[9]

Joan-Josep Climent, Diego Napp, Raquel Pinto, Rita Simões. Decoding of $2$D convolutional codes over an erasure channel. Advances in Mathematics of Communications, 2016, 10 (1) : 179-193. doi: 10.3934/amc.2016.10.179

[10]

Johan Rosenkilde. Power decoding Reed-Solomon codes up to the Johnson radius. Advances in Mathematics of Communications, 2018, 12 (1) : 81-106. doi: 10.3934/amc.2018005

[11]

Irene I. Bouw, Sabine Kampf. Syndrome decoding for Hermite codes with a Sugiyama-type algorithm. Advances in Mathematics of Communications, 2012, 6 (4) : 419-442. doi: 10.3934/amc.2012.6.419

[12]

Anas Chaaban, Vladimir Sidorenko, Christian Senger. On multi-trial Forney-Kovalev decoding of concatenated codes. Advances in Mathematics of Communications, 2014, 8 (1) : 1-20. doi: 10.3934/amc.2014.8.1

[13]

Vladimir Sidorenko, Christian Senger, Martin Bossert, Victor Zyablov. Single-trial decoding of concatenated codes using fixed or adaptive erasing. Advances in Mathematics of Communications, 2010, 4 (1) : 49-60. doi: 10.3934/amc.2010.4.49

[14]

Peter Beelen, Kristian Brander. Efficient list decoding of a class of algebraic-geometry codes. Advances in Mathematics of Communications, 2010, 4 (4) : 485-518. doi: 10.3934/amc.2010.4.485

[15]

Alexey Frolov, Victor Zyablov. On the multiple threshold decoding of LDPC codes over GF(q). Advances in Mathematics of Communications, 2017, 11 (1) : 123-137. doi: 10.3934/amc.2017007

[16]

Fernando Hernando, Tom Høholdt, Diego Ruano. List decoding of matrix-product codes from nested codes: An application to quasi-cyclic codes. Advances in Mathematics of Communications, 2012, 6 (3) : 259-272. doi: 10.3934/amc.2012.6.259

[17]

Jennifer D. Key, Washiela Fish, Eric Mwambene. Codes from the incidence matrices and line graphs of Hamming graphs $H^k(n,2)$ for $k \geq 2$. Advances in Mathematics of Communications, 2011, 5 (2) : 373-394. doi: 10.3934/amc.2011.5.373

[18]

Cristóbal Camarero, Carmen Martínez, Ramón Beivide. Identifying codes of degree 4 Cayley graphs over Abelian groups. Advances in Mathematics of Communications, 2015, 9 (2) : 129-148. doi: 10.3934/amc.2015.9.129

[19]

Christine A. Kelley, Deepak Sridhara, Joachim Rosenthal. Zig-zag and replacement product graphs and LDPC codes. Advances in Mathematics of Communications, 2008, 2 (4) : 347-372. doi: 10.3934/amc.2008.2.347

[20]

Joaquim Borges, Josep Rifà, Victor A. Zinoviev. Families of nested completely regular codes and distance-regular graphs. Advances in Mathematics of Communications, 2015, 9 (2) : 233-246. doi: 10.3934/amc.2015.9.233

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]