2012, 6(2): 131-163. doi: 10.3934/amc.2012.6.131

Codes on planar Tanner graphs

1. 

Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India, India

Received  February 2011 Revised  November 2011 Published  April 2012

Codes defined on graphs and their properties have been subjects of intense recent research. In this work, we are concerned with codes that have planar Tanner graphs. When the Tanner graph is planar, message-passing decoders can be efficiently implemented on chips without any issues of wiring. Also, recent work has shown the existence of optimal decoders for certain planar graphical models. The main contribution of this paper is an explicit upper bound on minimum distance $d$ of codes that have planar Tanner graphs as a function of the code rate $R$ for $R \geq 5/8$. The bound is given by \begin{equation*} d\le \left\lceil \frac{7-8R}{2(2R-1)} \right\rceil + 3\le 7. \end{equation*} As a result, high-rate codes with planar Tanner graphs will result in poor block-error rate performance, because of the constant upper bound on minimum distance.
Citation: Srimathy Srinivasan, Andrew Thangaraj. Codes on planar Tanner graphs. Advances in Mathematics of Communications, 2012, 6 (2) : 131-163. doi: 10.3934/amc.2012.6.131
References:
[1]

J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications,'', North-Holland, (1976).

[2]

V. Y. Chernyak and M. Chertkov, Planar graphical models which are easy,, J. Statist. Mechan. Theory Exper., 2010 (2010). doi: 10.1088/1742-5468/2010/11/P11007.

[3]

M. Chertkov, V. Y. Chernyak and R. Teodorescu, Belief propagation and loop series on planar graphs,, J. Statist. Mechan. Theory Exper., 2008 (2008). doi: 10.1088/1742-5468/2008/05/P05003.

[4]

K. Diks, H. N. Djidjev, O. Sykora and I. Vrto, Edge separators of planar and outerplanar graphs with applications,, J. Algorithms, 14 (1993), 258. doi: 10.1006/jagm.1993.1013.

[5]

T. Etzion, A. Trachtenberg and A. Vardy, Which codes have cycle-free Tanner graphs?,, IEEE Trans. Inform. Theory, 45 (1999), 2173. doi: 10.1109/18.782170.

[6]

V. Gómez, H. J. Kappen and M. Chertkov, Approximate inference on planar graphs using loop calculus and belief propagation,, J. Mach. Learn. Res., 99 (2010), 1273.

[7]

F. Harary, "Graph Theory,'', Addison-Wesley Publishers, (1969).

[8]

N. Kashyap, Code decomposition: theory and applications,, in, (2007), 481. doi: 10.1109/ISIT.2007.4557271.

[9]

N. Kashyap, A decomposition theory for binary linear codes,, IEEE Trans. Inform. Theory, 54 (2008), 3035. doi: 10.1109/TIT.2008.924700.

[10]

R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem,, in, (1977), 162. doi: 10.1109/SFCS.1977.6.

[11]

S. Srinivasan and A. Thangaraj, Codes that have Tanner graphs with non-overlapping cycles,, in, (2008), 299.

[12]

B. Xiang, R. Shen, A. Pan, D. Bao and X. Zeng, An area-efficient and low-power multirate decoder for quasi-cyclic low-density parity-check codes,, IEEE Trans. Very Large Scale Integr. Systems, 18 (2010), 1447. doi: 10.1109/TVLSI.2009.2025169.

[13]

C. Zhang, Z. Wang, J. Sha, L. Li and J. Lin, Flexible LDPC decoder design for multigigabit-per-second applications,, IEEE Trans. Circ. Systems I, 57 (2010), 116. doi: 10.1109/TCSI.2009.2018915.

show all references

References:
[1]

J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications,'', North-Holland, (1976).

[2]

V. Y. Chernyak and M. Chertkov, Planar graphical models which are easy,, J. Statist. Mechan. Theory Exper., 2010 (2010). doi: 10.1088/1742-5468/2010/11/P11007.

[3]

M. Chertkov, V. Y. Chernyak and R. Teodorescu, Belief propagation and loop series on planar graphs,, J. Statist. Mechan. Theory Exper., 2008 (2008). doi: 10.1088/1742-5468/2008/05/P05003.

[4]

K. Diks, H. N. Djidjev, O. Sykora and I. Vrto, Edge separators of planar and outerplanar graphs with applications,, J. Algorithms, 14 (1993), 258. doi: 10.1006/jagm.1993.1013.

[5]

T. Etzion, A. Trachtenberg and A. Vardy, Which codes have cycle-free Tanner graphs?,, IEEE Trans. Inform. Theory, 45 (1999), 2173. doi: 10.1109/18.782170.

[6]

V. Gómez, H. J. Kappen and M. Chertkov, Approximate inference on planar graphs using loop calculus and belief propagation,, J. Mach. Learn. Res., 99 (2010), 1273.

[7]

F. Harary, "Graph Theory,'', Addison-Wesley Publishers, (1969).

[8]

N. Kashyap, Code decomposition: theory and applications,, in, (2007), 481. doi: 10.1109/ISIT.2007.4557271.

[9]

N. Kashyap, A decomposition theory for binary linear codes,, IEEE Trans. Inform. Theory, 54 (2008), 3035. doi: 10.1109/TIT.2008.924700.

[10]

R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem,, in, (1977), 162. doi: 10.1109/SFCS.1977.6.

[11]

S. Srinivasan and A. Thangaraj, Codes that have Tanner graphs with non-overlapping cycles,, in, (2008), 299.

[12]

B. Xiang, R. Shen, A. Pan, D. Bao and X. Zeng, An area-efficient and low-power multirate decoder for quasi-cyclic low-density parity-check codes,, IEEE Trans. Very Large Scale Integr. Systems, 18 (2010), 1447. doi: 10.1109/TVLSI.2009.2025169.

[13]

C. Zhang, Z. Wang, J. Sha, L. Li and J. Lin, Flexible LDPC decoder design for multigigabit-per-second applications,, IEEE Trans. Circ. Systems I, 57 (2010), 116. doi: 10.1109/TCSI.2009.2018915.

[1]

Joaquim Borges, Josep Rifà, Victor A. Zinoviev. Families of nested completely regular codes and distance-regular graphs. Advances in Mathematics of Communications, 2015, 9 (2) : 233-246. doi: 10.3934/amc.2015.9.233

[2]

John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019

[3]

Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323

[4]

Emmanuel Charbit, Irène Charon, Gérard Cohen, Olivier Hudry, Antoine Lobstein. Discriminating codes in bipartite graphs: bounds, extremal cardinalities, complexity. Advances in Mathematics of Communications, 2008, 2 (4) : 403-420. doi: 10.3934/amc.2008.2.403

[5]

Idan Goldenberg, David Burshtein. Error bounds for repeat-accumulate codes decoded via linear programming. Advances in Mathematics of Communications, 2011, 5 (4) : 555-570. doi: 10.3934/amc.2011.5.555

[6]

Beniamin Mounits, Tuvi Etzion, Simon Litsyn. New upper bounds on codes via association schemes and linear programming. Advances in Mathematics of Communications, 2007, 1 (2) : 173-195. doi: 10.3934/amc.2007.1.173

[7]

Kamil Otal, Ferruh Özbudak. Explicit constructions of some non-Gabidulin linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 589-600. doi: 10.3934/amc.2016028

[8]

Ferruh Özbudak, Patrick Solé. Gilbert-Varshamov type bounds for linear codes over finite chain rings. Advances in Mathematics of Communications, 2007, 1 (1) : 99-109. doi: 10.3934/amc.2007.1.99

[9]

Yujuan Li, Guizhen Zhu. On the error distance of extended Reed-Solomon codes. Advances in Mathematics of Communications, 2016, 10 (2) : 413-427. doi: 10.3934/amc.2016015

[10]

Carlos Munuera, Morgan Barbier. Wet paper codes and the dual distance in steganography. Advances in Mathematics of Communications, 2012, 6 (3) : 273-285. doi: 10.3934/amc.2012.6.273

[11]

Dina Ghinelli, Jennifer D. Key. Codes from incidence matrices and line graphs of Paley graphs. Advances in Mathematics of Communications, 2011, 5 (1) : 93-108. doi: 10.3934/amc.2011.5.93

[12]

Carlos Munuera, Fernando Torres. A note on the order bound on the minimum distance of AG codes and acute semigroups. Advances in Mathematics of Communications, 2008, 2 (2) : 175-181. doi: 10.3934/amc.2008.2.175

[13]

Andries E. Brouwer, Tuvi Etzion. Some new distance-4 constant weight codes. Advances in Mathematics of Communications, 2011, 5 (3) : 417-424. doi: 10.3934/amc.2011.5.417

[14]

Diego Napp, Roxana Smarandache. Constructing strongly-MDS convolutional codes with maximum distance profile. Advances in Mathematics of Communications, 2016, 10 (2) : 275-290. doi: 10.3934/amc.2016005

[15]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[16]

José Joaquín Bernal, Diana H. Bueno-Carreño, Juan Jacobo Simón. Cyclic and BCH codes whose minimum distance equals their maximum BCH bound. Advances in Mathematics of Communications, 2016, 10 (2) : 459-474. doi: 10.3934/amc.2016018

[17]

Olav Geil, Carlos Munuera, Diego Ruano, Fernando Torres. On the order bounds for one-point AG codes. Advances in Mathematics of Communications, 2011, 5 (3) : 489-504. doi: 10.3934/amc.2011.5.489

[18]

Christine A. Kelley, Deepak Sridhara. Eigenvalue bounds on the pseudocodeword weight of expander codes. Advances in Mathematics of Communications, 2007, 1 (3) : 287-306. doi: 10.3934/amc.2007.1.287

[19]

Karim Samei, Saadoun Mahmoudi. Singleton bounds for R-additive codes. Advances in Mathematics of Communications, 2018, 12 (1) : 107-114. doi: 10.3934/amc.2018006

[20]

Christine Bachoc, Alberto Passuello, Frank Vallentin. Bounds for projective codes from semidefinite programming. Advances in Mathematics of Communications, 2013, 7 (2) : 127-145. doi: 10.3934/amc.2013.7.127

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]