\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

List decoding of matrix-product codes from nested codes: An application to quasi-cyclic codes

Abstract / Introduction Related Papers Cited by
  • A list decoding algorithm for matrix-product codes is provided when $C_1, ..., C_s$ are nested linear codes and $A$ is a non-singular by columns matrix. We estimate the probability of getting more than one codeword as output when the constituent codes are Reed-Solomon codes. We extend this list decoding algorithm for matrix-product codes with polynomial units, which are quasi-cyclic codes. Furthermore, it allows us to consider unique decoding for matrix-product codes with polynomial units.
    Mathematics Subject Classification: Primary: 94B05; Secondary: 94B35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Beelen and K. Brander, Key equations for list decoding of Reed-Solomon codes and how to solve them, J. Symbolic Comput., 45 (2010), 773-786.doi: 10.1016/j.jsc.2010.03.010.

    [2]

    T. Blackmore and G. H. Norton, Matrix-product codes over $\mathbb F_q$, Appl. Algebra Engrg. Comm. Comput., 12 (2001), 477-500.doi: 10.1007/PL00004226.

    [3]

    I. I. Dumer, Concatenated codes and their multilevel generalizations, in "Handbook of Coding Theory,'' North-Holland, Amsterdam, (1998), 1911-1988.

    [4]

    P. Elias, List decoding for noisy channels, Rep. No. 335, Research Laboratory of Electronics, MIT, Cambridge, MA, 1957.

    [5]

    V. Guruswami and A. Rudra, Better binary list decodable codes via multilevel concatenation, IEEE Trans. Inform. Theory, 55 (2009), 19-26.doi: 10.1109/TIT.2008.2008124.

    [6]

    V. Guruswami and M. Sudan, Improved decoding of Reed-Solomon and algebraic-geometry codes, IEEE Trans. Inform. Theory, 45 (1999), 1757-1767.doi: 10.1109/18.782097.

    [7]

    F. Hernando, K. Lally and D. Ruano, Construction and decoding of matrix-product codes from nested codes, Appl. Algebra Engrg. Comm. Comput., 20 (2009), 497-507.doi: 10.1007/s00200-009-0113-5.

    [8]

    F. Hernando and D. Ruano, New linear codes from matrix-product codes with polynomial units, Adv. Math. Commun., 4 (2010), 363-367.doi: 10.3934/amc.2010.4.363.

    [9]

    T. Kasami, A Gilbert-Varshamov bound for quasi-cyclic codes of rate 1/2, IEEE Trans. Inform. Theory, IT-20 (1974), 679.doi: 10.1109/TIT.1974.1055262.

    [10]

    K. Lally, Quasicyclic codes - some practical issues, in "Proceedings of 2002 IEEE International Symposium on Information Theory,'' 2002.

    [11]

    K. Lally and P. Fitzpatrick, Algebraic structure of quasicyclic codes, Discrete Appl. Math., 111 (2001), 157-175.doi: 10.1016/S0166-218X(00)00350-4.

    [12]

    K. Lee and M. E. O'Sullivan, List decoding of Reed-Solomon codes from a Gröbner basis perspective, J. Symbolic Comput., 43 (2008), 645-658.doi: 10.1016/j.jsc.2008.01.002.

    [13]

    R. R. Nielsen and T. Høholdt, Decoding Reed-Solomon codes beyond half the minimum distance, in "Coding Theory, Cryptography and Related Areas (Guanajuato, 1998),'' Springer, Berlin, (2000), 221-236.

    [14]

    F. Özbudak and H. Stichtenoth, Note on Niederreiter-Xing's propagation rule for linear codes, Appl. Algebra Engrg. Comm. Comput., 13 (2002), 53-56.doi: 10.1007/s002000100091.

    [15]

    W. C. Schmid and R. Schürer, "Mint,'' Dept. of Mathematics, University of Salzburg, http://mint.sbg.ac.at/about.php

    [16]

    J. M. Wozencraft, List decoding, in "Quarterly Progress Report,'' MIT, Cambridge, MA, (1958), 90-95.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(151) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return