Citation: |
[1] |
C. Bachoc and P. Gaborit, On extremal additive $\mathbb F_4$ codes of length $10$ to $18$, J. Théorie Nombres Bordeaux, 12 (2000), 255-271. |
[2] |
J. Bierbrauer, "Introduction to Coding Theory,'' Chapman & Hall/CRC, 2005. |
[3] |
A. Blokhuis and A. E. Brouwer, Small additive quaternary codes, European J. Combin., 25 (2004), 161-167.doi: 10.1016/S0195-6698(03)00096-9. |
[4] |
J. Borges, C. Fernández, J. Pujol, J. Rifà and M. Villanueva, On $\mathbb Z_2\mathbb Z_4$-linear codes and duality, in "Fifth Conference on Discrete Mathematics and Computer Science (Spanish),'' (2006), 171-177. |
[5] |
J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà and M. Villanueva, $\mathbb Z_2\mathbb Z_4$-linear codes: generator matrices and duality, Des. Codes Crypt., 54 (2010), 167-179.doi: 10.1007/s10623-009-9316-9. |
[6] |
J. Borges and J. Rifà, A characterization of 1-perfect additive codes, IEEE Trans. Inform. Theory, 45 (1999), 1688-1697.doi: 10.1109/18.771247. |
[7] |
R. A. Brualdi and V. S. Pless, Weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, IT-37 (1991), 1222-1225.doi: 10.1109/18.86979. |
[8] |
J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.doi: 10.1109/18.59931. |
[9] |
P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., 10 (1973), 97 pp. |
[10] |
P. Delsarte and V. Levenshtein, Association schemes and coding theory, IEEE Trans. Inform. Theory, 44 (1998), 2477-2504.doi: 10.1109/18.720545. |
[11] |
S. T. Dougherty and P. Solé, Shadows of codes and lattices, in "Proceedings of the Third Asian Mathematical Conference, 2000 (Diliman),'' World Sci. Publ., (2002), 139-152. |
[12] |
C. Fernández, J. Pujol and M. Villanueva, $\mathbb Z_2\mathbb Z_4$-linear codes: rank and kernel, Des. Codes Crypt., 56 (2010), 43-59.doi: 10.1007/s10623-009-9340-9. |
[13] |
A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of kerdock, preparata, goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.doi: 10.1109/18.312154. |
[14] |
J.-L. Kim and V. Pless, Designs in additive codes over GF(4), Des. Codes Crypt., 30 (2003), 187-199.doi: 10.1023/A:1025484821641. |
[15] |
F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland Publishing Co., Amsterdam, 1977. |
[16] |
K. T. Phelps and J. Rifà, On binary $1$-perfect additive codes: some structural properties, IEEE Trans. Inform. Theory, 48 (2002), 2587-2592.doi: 10.1109/TIT.2002.801474. |
[17] |
J. Pujol and J. Rifà, Translation invariant propelinear codes, IEEE Trans. Inform. Theory, 43 (1997), 590-598.doi: 10.1109/18.556115. |
[18] |
E. Rains and N. J. A. Sloane, Self-dual codes, in "Handbook of Coding Theory'' (eds. V.S. Pless and W.C. Huffman), Elsevier, Amsterdam, (1998), 177-294. |
[19] |
H. N. Ward, A restriction on the weight enumerator of a self-dual code, J. Combin. Theory Ser. A, 21 (1976), 253-255.doi: 10.1016/0097-3165(76)90071-6. |