\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Characterization and constructions of self-dual codes over $\mathbb Z_2\times \mathbb Z_4$

Abstract / Introduction Related Papers Cited by
  • Self-dual codes over $\mathbb Z_2\times\mathbb Z_4$ are subgroups of $\mathbb Z_2^\alpha\times\mathbb Z_4^\beta$ that are equal to their orthogonal under an inner-product that relates these codes to the binary Hamming scheme. Three types of self-dual codes are defined. For each type, the possible values $\alpha,\beta$ such that there exist a self-dual code $\mathcal C\subseteq \mathbb Z_2^\alpha \times\mathbb Z_4^\beta$ are established. Moreover, the construction of such a code for each type and possible pair $(\alpha,\beta)$ is given. The standard techniques of invariant theory are applied to describe the weight enumerators for each type. Finally, we give a construction of self-dual codes from existing self-dual codes.
    Mathematics Subject Classification: Primary: 94B60; Secondary: 94B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Bachoc and P. Gaborit, On extremal additive $\mathbb F_4$ codes of length $10$ to $18$, J. Théorie Nombres Bordeaux, 12 (2000), 255-271.

    [2]

    J. Bierbrauer, "Introduction to Coding Theory,'' Chapman & Hall/CRC, 2005.

    [3]

    A. Blokhuis and A. E. Brouwer, Small additive quaternary codes, European J. Combin., 25 (2004), 161-167.doi: 10.1016/S0195-6698(03)00096-9.

    [4]

    J. Borges, C. Fernández, J. Pujol, J. Rifà and M. Villanueva, On $\mathbb Z_2\mathbb Z_4$-linear codes and duality, in "Fifth Conference on Discrete Mathematics and Computer Science (Spanish),'' (2006), 171-177.

    [5]

    J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà and M. Villanueva, $\mathbb Z_2\mathbb Z_4$-linear codes: generator matrices and duality, Des. Codes Crypt., 54 (2010), 167-179.doi: 10.1007/s10623-009-9316-9.

    [6]

    J. Borges and J. Rifà, A characterization of 1-perfect additive codes, IEEE Trans. Inform. Theory, 45 (1999), 1688-1697.doi: 10.1109/18.771247.

    [7]

    R. A. Brualdi and V. S. Pless, Weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, IT-37 (1991), 1222-1225.doi: 10.1109/18.86979.

    [8]

    J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.doi: 10.1109/18.59931.

    [9]

    P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., 10 (1973), 97 pp.

    [10]

    P. Delsarte and V. Levenshtein, Association schemes and coding theory, IEEE Trans. Inform. Theory, 44 (1998), 2477-2504.doi: 10.1109/18.720545.

    [11]

    S. T. Dougherty and P. Solé, Shadows of codes and lattices, in "Proceedings of the Third Asian Mathematical Conference, 2000 (Diliman),'' World Sci. Publ., (2002), 139-152.

    [12]

    C. Fernández, J. Pujol and M. Villanueva, $\mathbb Z_2\mathbb Z_4$-linear codes: rank and kernel, Des. Codes Crypt., 56 (2010), 43-59.doi: 10.1007/s10623-009-9340-9.

    [13]

    A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of kerdock, preparata, goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.doi: 10.1109/18.312154.

    [14]

    J.-L. Kim and V. Pless, Designs in additive codes over GF(4), Des. Codes Crypt., 30 (2003), 187-199.doi: 10.1023/A:1025484821641.

    [15]

    F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland Publishing Co., Amsterdam, 1977.

    [16]

    K. T. Phelps and J. Rifà, On binary $1$-perfect additive codes: some structural properties, IEEE Trans. Inform. Theory, 48 (2002), 2587-2592.doi: 10.1109/TIT.2002.801474.

    [17]

    J. Pujol and J. Rifà, Translation invariant propelinear codes, IEEE Trans. Inform. Theory, 43 (1997), 590-598.doi: 10.1109/18.556115.

    [18]

    E. Rains and N. J. A. Sloane, Self-dual codes, in "Handbook of Coding Theory'' (eds. V.S. Pless and W.C. Huffman), Elsevier, Amsterdam, (1998), 177-294.

    [19]

    H. N. Ward, A restriction on the weight enumerator of a self-dual code, J. Combin. Theory Ser. A, 21 (1976), 253-255.doi: 10.1016/0097-3165(76)90071-6.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(314) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return