\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Secondary constructions of bent functions and their enforcement

Abstract / Introduction Related Papers Cited by
  • Thirty years ago, Rothaus introduced the notion of bent function and presented a secondary construction (building new bent functions from already defined ones), which is now called the Rothaus construction. This construction has a strict requirement for its initial functions. In this paper, we first concentrate on the design of the initial functions in the Rothaus construction. We show how to construct Maiorana-McFarland's (M-M) bent functions, which can then be used as initial functions, from Boolean permutations and orthomorphic permutations. We deduce that at least $(2^n!\times 2^{2^n})(2^{2^n}\times2^{2^{n-1}})^2$ bent functions in $2n+2$ variables can be constructed by using Rothaus' construction. In the second part of the note, we present a new secondary construction of bent functions which generalizes the Rothaus construction. This construction requires initial functions with stronger conditions; we give examples of functions satisfying them. Further, we generalize the new secondary construction of bent functions and illustrate it with examples.
    Mathematics Subject Classification: 06E30, 94A60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Canteaut and M. Trabbia, Improved fast correlation attacks using parity-check equations of weight 4 and 5, in "EUROCRYPT 2000'' (ed. B. Preneel), Springer, (2000), 573-588.doi: 10.1007/3-540-45539-6_40.

    [2]

    C. Carlet, Two new classes of bent functions, in "EUROCRYPT'93'' (ed. T. Helleseth), Springer, (1994), 77-101.

    [3]

    C. Carlet, Generalized partial spreads, IEEE Trans. Inform. Theory, 41 (1995), 1482-1487.doi: 10.1109/18.412693.

    [4]

    C. Carlet, A construction of bent functions, in "Proceeding of the Third International Conference on Finite Fields and Applications'' (eds. S. Cohen and H. Niederreiter), Cambridge University Press, (1996), 47-58.doi: 10.1017/CBO9780511525988.006.

    [5]

    C. Carlet, On the confusion and diffusion properties of Maiorana-McFarland's and extended Maiorana-McFarland's functions, J. Complexity, 20 (2004), 182-204.doi: 10.1016/j.jco.2003.08.013.

    [6]

    C. Carlet, On the secondary constructions of resilient and bent functions, in "Proceedings of the Workshop on Coding, Cryptography and Combinatorics 2003'' (eds. K. Feng, H. Niederreiter and C. Xing), Birkhäuser Verlag, (2004), 3-28.

    [7]

    C. Carlet, On bent and highly nonlinear balanced/resilient functions and their algebaric immunities, in "AAECC 2006'' (eds. M. Fossorier et al.), Springer, (2006), 1-28.

    [8]

    C. Carlet, Boolean functions for cryptography and error correcting codes, in "Boolean Models and Methods in Mathematics, Computer Science, and Engineering'' (eds. Y. Crama and P. Hammer), Cambridge University Press, (2010), 257-397.

    [9]

    C. Carlet, H. Dobbertin and G. Leander, Normal extensions of bent functions, IEEE Trans. Inform. Theory, 50 (2004), 2880-2885.doi: 10.1109/TIT.2004.836681.

    [10]

    J. Dillon, "Elementary Hadamard Difference Sets,'' Ph.D thesis, Univ. Maryland, College Park, 1974.

    [11]

    H. Dobbertin, Construction of bent functions and balanced Boolean functions with high nonlinearity, in "Fast Software Encryption,'' Springer, (1995), 61-74.doi: 10.1007/3-540-60590-8_5.

    [12]

    H. Dobbertin and G. Leander, Bent functions embedded into the recursive framework of $\mathbb Z$-bent functions, Des. Codes Cryptogr., 49 (2008), 3-22.doi: 10.1007/s10623-008-9189-3.

    [13]

    P. Guillo, Completed GPS covers all bent functions, J. Combin. Theory Ser. A, 93 (2001), 242-260.doi: 10.1006/jcta.2000.3076.

    [14]

    X.-D. Hou, New constructions of bent functions, J. Combin. Inform. System Sci., 25 (2000), 173-189.

    [15]

    P. Langevin, G. Leander, P. Rabizzoni, P. Veron and J.-P. ZanottiClassification of Boolean quartics forms in eight variables, availabel at http://langevin.univ-tln.fr/project/quartics/quartics.html

    [16]

    G. Leander, Monomial bent functions, IEEE Trans. Inform. Theory, 52 (2006), 738-743.doi: 10.1109/TIT.2005.862121.

    [17]

    G. Leander and G. McGuire, Construction of bent functions from near-bent functions, J. Combin. Theory Ser. A, 116 (2009), 960-970.doi: 10.1016/j.jcta.2008.12.004.

    [18]

    Q. Liu, Y. Zhang, C. Cheng and W. Lü, Construction and counting orthomorphism based on transversal, in "2008 International Conference on Computational Intelligence and Security,'' IEEE Computer Society, (2008), 369-373.

    [19]

    F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland, Amsterdam, 1977.

    [20]

    R. I. McFarland, A family of difference sets in non-cyclic groups, J. Comb. Theory Ser. A, 15 (1973), 1-10.doi: 10.1016/0097-3165(73)90031-9.

    [21]

    Q. Meng, L. Chen and F. Fu, On homogeneous rotation symmetric bent functions, Discrete Appl. Math., 158 (2010), 1111-1117.doi: 10.1016/j.dam.2010.02.009.

    [22]

    J. D. Olsen, R. A. Scholtz and L. R. Welch, Bent-function sequence, IEEE Trans. Inform. Theory, 28 (1982), 858-864.doi: 10.1109/TIT.1982.1056589.

    [23]

    O. S. Rothaus, On "bent'' functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.doi: 10.1016/0097-3165(76)90024-8.

    [24]

    J. Wolfmann, Bent functions and coding theory, in "Difference Sets, Sequences and their Correlation Properties'' (eds. A. Pott, P.V. Kumar, T. Helleseth and D. Jungnickel), Amsterdam, Kluwer, (1999), 393-417.

    [25]

    H. Zhen, H. Zhang, T. Cui and X. Du, A new method for construction of orthomorphic permutations (in Chinese), J. Electr. Inform. Tech., 31 (2009), 1438-1441.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(324) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return