\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Bounds for projective codes from semidefinite programming

Abstract / Introduction Related Papers Cited by
  • We apply the semidefinite programming method to derive bounds for projective codes over a finite field.
    Mathematics Subject Classification: 94B65, 90C22.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung, Network information flow, IEEE Trans. Inform. Theory, 46 (2000), 1204-1216.doi: 10.1109/18.850663.

    [2]

    C. Bachoc, Applications of semidefinite programming to coding theory, in "IEEE Information Theory Workshop (ITW),'' 2010.

    [3]

    C. Bachoc, D. C. Gijswijt, A. Schrijver and F. Vallentin, Invariant semidefinite programs, in "Handbook on Semidefinite, Conic and Polynomial Optimization'' (eds. M.F. Anjos and J.B. Lasserre), Springer, (2012), 219-269.

    [4]

    C. Bachoc and F. Vallentin, More semidefinite programming bounds (extended abstract), in "COE Conference on the Development of Dynamic Mathematics with High Functionality,'' Fukuoka, (2007), 129-132.

    [5]

    C. Bachoc and F. Vallentin, New upper bounds for kissing numbers from semidefinite programming, J. Amer. Math. Soc., 21 (2008), 909-924.doi: 10.1090/S0894-0347-07-00589-9.

    [6]

    P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., (1973), 97 pp.

    [7]

    P. Delsarte, Hahn polynomials, discrete harmonics and $t$-designs, SIAM J. Appl. Math., 34 (1978), 157-166.

    [8]

    C. F. Dunkl, An addition theorem for some $q$-Hahn polynomials, Monatsh. Math., 85 (1977), 5-37.

    [9]

    T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams, IEEE Trans. Inform. Theory, 55 (2009), 2909-2919.doi: 10.1109/TIT.2009.2021376.

    [10]

    T. Etzion and A. Vardy, Error-correcting codes in projective space, IEEE Trans. Inform. Theory, 57 (2011), 1165-1173.

    [11]

    P. Frankl and R. M. Wilson, The Erdős-Ko-Rado theorem for vector spaces, J. Combin. Theory Ser. A, 43 (1986), 228-236.

    [12]

    D. C. Gijswijt, H. D. Mittelmann and A. Schrijver, Semidefinite code bounds based on quadruple distances, IEEE Trans. Inform. Theory, 58 (2012), 2697-2705.doi: 10.1109/TIT.2012.2184845.

    [13]

    T. Ho, R. Koetter, M. Médard, D. R. Karger and M. Effros, The benefits of coding over routing in a randomized setting, in "Proc. IEEE ISIT'03,'' 2003.

    [14]

    A. Khaleghi and F. R. Kschischang, Projective space codes for the injection metric, in "Proc. 11th Canadian Workshop Inform. Theory,'' (2009), 9-12.

    [15]

    R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3579-3591.

    [16]

    A. Kohnert and S. Kurz, Construction of large constant dimension codes with a prescribed minimum distance, in "Mathematical Methods in Computer Science,'' Springer, Berlin, (2008), 31-42.

    [17]

    F. R. Kschischang and D. Silva, On metrics for error correction in network coding, IEEE Trans. Inform. Theory, 55 (2009), 5479-5490.

    [18]

    L. Lovász, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory, 25 (1979), 1-5.

    [19]

    F. Manganiello, E. Gorla and J. Rosenthal, Spread codes and spread decoding in network coding, in "Proceedings of the 2008 IEEE International Symposium on Information,'' (2008), 851-855.

    [20]

    R. J. McEliece, E. R. Rodemich and H. C. Rumsey Jr., The Lovász bound and some generalizations, J. Combin. Inform. Sys. Sci., 3 (1978), 134-152.

    [21]

    A. Schrijver, A comparison of the Delsarte and Lovász bound, IEEE Trans. Inform. Theory, 25 (1979), 425-429.

    [22]

    A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory, 51 (2005), 2859-2866.doi: 10.1109/TIT.2005.851748.

    [23]

    M. Schwartz and T. Etzion, Codes and anticodes in the Grassmann graph, J. Combin. Theory Ser. A, 97 (2002), 27-42.

    [24]

    M. J. Todd, Semidefinite optimization, Acta Numerica, 10 (2001), 515-560.

    [25]

    F. Vallentin, Symmetry in semidefinite programs, Linear Algebra Appl., 430 (2009), 360-369.

    [26]

    L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), 49-95.

    [27]

    H. Wang, C. Xing and R. Safavi-Naini, Linear authentication codes: bounds and constructions, IEEE Trans. Inform. Theory, 49 (2003), 866-872.doi: 10.1109/TIT.2003.809567.

    [28]

    S. T. Xia and F. W. Fu, Johnson type bounds on constant dimension codes, Des. Codes Crypt., 50 (2009), 163-172.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(124) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return