\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A new class of majority-logic decodable codes derived from polarity designs

Abstract / Introduction Related Papers Cited by
  • The polarity designs, introduced in [9], are combinatorial 2-designs having the same parameters as a projective geometry design $PG_s(2s,q)$ formed by the $s$-subspaces of $PG(2s,q)$, $s\ge 2$, $q=p^t$, $p$ prime. If $q=p$ is a prime, a polarity design has also the same $p$-rank as $PG_s(2s,p)$. If $q=2$, any polarity 2-design is extendable to a 3-design having the same parameters and 2-rank as an affine geometry design $AG_{s+1}(2s+1,2)$ formed by the $(s+1)$-subspaces of $AG(2s+1,2)$. It is shown in this paper that a linear code being the null space of the incidence matrix of a polarity design can correct by majority-logic decoding the same number of errors as the projective geometry code based on $PG_s(2s,q)$. In the binary case, any polarity 3-design yields a binary self-dual code with the same parameters, minimum distance, and correcting the same number of errors by majority-logic decoding as the Reed-Muller code of length $2^{2s+1}$ and order $s$.
    Mathematics Subject Classification: Primary: 94B30; Secondary: 05B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. F. Assmus Jr. and J. D. Key, "Designs and Their Codes,'' Cambridge Univ. Press, Cambridge, 1992.

    [2]

    T. Beth, D. Jungnickel and H. Lenz, "Design Theory,'' 2nd edition, Cambridge Univ. Press, Cambridge, 1999.

    [3]

    I. F. Blake and R. C. Mullin, "The Mathematical Theory of Coding,'' Academic Press, New York, 1975.

    [4]

    D. Clark, D. Jungnickel and V. D. Tonchev, Affine geometry designs, polarities, and Hamada's conjecture, J. Combin. Theory Ser. A, 118 (2011), 231-239.doi: 10.1016/j.jcta.2010.06.007.

    [5]

    P. Delsarte, J.-M. Goethals and F. J. MacWilliams, On generalized Reed-Muller codes and their relatives, Inform. Control, 16 (1970), 403-442.doi: 10.1016/S0019-9958(70)90214-7.

    [6]

    J.-M. Goethals and P. Delsarte, On a class of majority-decodable cyclic codes, IEEE Trans. Inform. Theory, 14 (1968), 182-188.

    [7]

    N. Hamada, On the $p$-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its application to error correcting codes, Hiroshima Math. J., 3 (1973), 154-226.

    [8]

    J. W. P. Hirschfeld, "Projective Geometries over Finite Fields,'' 2nd edition, Oxford Univ. Press, Oxford, 1988.

    [9]

    D. Jungnickel and V. D. Tonchev, Polarities, quasi-symmetric designs, and Hamada's conjecture, Des. Codes Cryptogr., 51 (2009), 131-140.doi: 10.1007/s10623-008-9249-8.

    [10]

    D. Jungnickel and V. D. Tonchev, The number of designs with geometric parameters grows exponentially, Des. Codes Cryptogr., 55 (2010), 131-140.doi: 10.1007/s10623-009-9299-6.

    [11]

    D. E. Muller, Application of Boolean algebra to switching circuit design and to error detection, IRE Trans. Electron. Comput., EC-3 (1954), 6-12.

    [12]

    W. W. Peterson and E. J. Weldon, "Error-Correcting Codes,'' 2nd edition, MIT Press, Cambridge, MA, 1972.

    [13]

    M. Rahman and I. F. Blake, Majority logic decoding using combinatorial designs, IEEE Trans. Inform. Theory, 21 (1975), 585-587.doi: 10.1109/TIT.1975.1055428.

    [14]

    I. S. Reed, A class of multiple-error correcting codes and the decoding scheme, IRE Trans. Inform. Theory, 4 (1954), 38-49.

    [15]

    L. D. Rudolph, A class of majority logic decodable codes, IEEE Trans. Inform. Theory, 13 (1967), 305-307.doi: 10.1109/TIT.1967.1053994.

    [16]

    V. D. Tonchev, "Combinatorial Configurations: Designs, Codes, Graphs,'' Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1988.

    [17]

    E. J. Weldon, Euclidean geometry cyclic codes, in "Proceedings of the Conference on Combinatorial Mathematics and its Applications,'' Univ. North Carolina, Chapel Hill, 1967.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(152) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return