Citation: |
[1] |
E. F. Assmus Jr. and J. D. Key, "Designs and Their Codes,'' Cambridge Univ. Press, Cambridge, 1992. |
[2] |
T. Beth, D. Jungnickel and H. Lenz, "Design Theory,'' 2nd edition, Cambridge Univ. Press, Cambridge, 1999. |
[3] |
I. F. Blake and R. C. Mullin, "The Mathematical Theory of Coding,'' Academic Press, New York, 1975. |
[4] |
D. Clark, D. Jungnickel and V. D. Tonchev, Affine geometry designs, polarities, and Hamada's conjecture, J. Combin. Theory Ser. A, 118 (2011), 231-239.doi: 10.1016/j.jcta.2010.06.007. |
[5] |
P. Delsarte, J.-M. Goethals and F. J. MacWilliams, On generalized Reed-Muller codes and their relatives, Inform. Control, 16 (1970), 403-442.doi: 10.1016/S0019-9958(70)90214-7. |
[6] |
J.-M. Goethals and P. Delsarte, On a class of majority-decodable cyclic codes, IEEE Trans. Inform. Theory, 14 (1968), 182-188. |
[7] |
N. Hamada, On the $p$-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its application to error correcting codes, Hiroshima Math. J., 3 (1973), 154-226. |
[8] |
J. W. P. Hirschfeld, "Projective Geometries over Finite Fields,'' 2nd edition, Oxford Univ. Press, Oxford, 1988. |
[9] |
D. Jungnickel and V. D. Tonchev, Polarities, quasi-symmetric designs, and Hamada's conjecture, Des. Codes Cryptogr., 51 (2009), 131-140.doi: 10.1007/s10623-008-9249-8. |
[10] |
D. Jungnickel and V. D. Tonchev, The number of designs with geometric parameters grows exponentially, Des. Codes Cryptogr., 55 (2010), 131-140.doi: 10.1007/s10623-009-9299-6. |
[11] |
D. E. Muller, Application of Boolean algebra to switching circuit design and to error detection, IRE Trans. Electron. Comput., EC-3 (1954), 6-12. |
[12] |
W. W. Peterson and E. J. Weldon, "Error-Correcting Codes,'' 2nd edition, MIT Press, Cambridge, MA, 1972. |
[13] |
M. Rahman and I. F. Blake, Majority logic decoding using combinatorial designs, IEEE Trans. Inform. Theory, 21 (1975), 585-587.doi: 10.1109/TIT.1975.1055428. |
[14] |
I. S. Reed, A class of multiple-error correcting codes and the decoding scheme, IRE Trans. Inform. Theory, 4 (1954), 38-49. |
[15] |
L. D. Rudolph, A class of majority logic decodable codes, IEEE Trans. Inform. Theory, 13 (1967), 305-307.doi: 10.1109/TIT.1967.1053994. |
[16] |
V. D. Tonchev, "Combinatorial Configurations: Designs, Codes, Graphs,'' Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1988. |
[17] |
E. J. Weldon, Euclidean geometry cyclic codes, in "Proceedings of the Conference on Combinatorial Mathematics and its Applications,'' Univ. North Carolina, Chapel Hill, 1967. |