2013, 7(3): 253-265. doi: 10.3934/amc.2013.7.253

On codes over rings invariant under affine groups

1. 

Institute of Mathematics, 125 Pushkin Str., Almaty 050010, Kazakhstan

Received  December 2011 Revised  March 2013 Published  July 2013

We give a description of extended cyclic codes of length $p^n$ over a field and over the ring of integers modulo $p^e$ admitting the affine group $AGL_m(p^t)$, $n=mt$, as a permutation group.
Citation: Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253
References:
[1]

K. S. Abdukhalikov, Affine invariant and cyclic codes over $p$-adic numbers and finite rings,, Des. Codes Cryptogr., 23 (2001), 343. doi: 10.1023/A:1011227228998.

[2]

K. S. Abdukhalikov, Codes over $p$-adic numbers and finite rings invariant under the full affine group,, Finite Fields Appl., 7 (2001), 449. doi: 10.1006/ffta.2000.0297.

[3]

K. S. Abdukhalikov, Defining sets of cyclic codes invariant under the affine group,, Electron. Notes Discrete Math., 6 (2001), 328. doi: 10.1016/S1571-0653(04)00184-2.

[4]

K. S. Abdukhalikov, Lattices invariant under the affine general linear group,, J. Algebra, 276 (2004), 638. doi: 10.1016/S0021-8693(03)00496-4.

[5]

K. Abdukhalikov, Defining sets of extended cyclic codes invariant under the affine group,, J. Pure Appl. Algebra, 196 (2005), 1. doi: 10.1016/j.jpaa.2004.02.016.

[6]

K. Abdukhalikov, E. Bannai and S. Suda, Association schemes related to universally optimal configurations, Kerdock codes and extremal Euclidean line-sets,, J. Combin. Theory Ser. A, 116 (2009), 434. doi: 10.1016/j.jcta.2008.07.002.

[7]

M. Bardoe and P. Sin, The permutation modules for $GL(n+1,\mathbb F_q)$ acting on $\mathbb P^n(\mathbb F_q)$ and $\mathbb F_q^{n+1}$,, J. London Math. Soc. (2), 61 (2000), 58. doi: 10.1112/S002461079900839X.

[8]

T. Berger and P. Charpin, The permutation group of affine-invariant extended cyclic codes,, IEEE Trans. Inform. Theory, 42 (1996), 2194. doi: 10.1109/18.556607.

[9]

J. T. Blackford and D. K. Ray-Chaudhuri, A transform approach to permutation groups of cyclic codes over Galois rings,, IEEE Trans. Inform. Theory, 46 (2000), 2050. doi: 10.1109/18.887849.

[10]

P. Delsarte, On cyclic codes that are invariant under the general linear group,, IEEE Trans. Inform. Theory, 16 (1970), 760.

[11]

B. K. Dey and B. S. Rajan, Affine invariant extended cyclic codes over Galois rings,, IEEE Trans. Inform. Theory, 50 (2004), 691. doi: 10.1109/TIT.2004.825044.

[12]

A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes,, IEEE Trans. Inform. Theory, 40 (1994), 301. doi: 10.1109/18.312154.

[13]

W. C. Huffman, Codes and groups,, in, 2 (1998), 1345.

[14]

T. Kasami, S. Lin and W. W. Peterson, Some results on cyclic codes which are invariant under the affine group and their applications,, Inform. Control, 11 (1967), 475. doi: 10.1016/S0019-9958(67)90691-2.

[15]

P. Sin, On codes that are invariant under the affine group,, Electron. J. Combin., 19 (2012), 1.

show all references

References:
[1]

K. S. Abdukhalikov, Affine invariant and cyclic codes over $p$-adic numbers and finite rings,, Des. Codes Cryptogr., 23 (2001), 343. doi: 10.1023/A:1011227228998.

[2]

K. S. Abdukhalikov, Codes over $p$-adic numbers and finite rings invariant under the full affine group,, Finite Fields Appl., 7 (2001), 449. doi: 10.1006/ffta.2000.0297.

[3]

K. S. Abdukhalikov, Defining sets of cyclic codes invariant under the affine group,, Electron. Notes Discrete Math., 6 (2001), 328. doi: 10.1016/S1571-0653(04)00184-2.

[4]

K. S. Abdukhalikov, Lattices invariant under the affine general linear group,, J. Algebra, 276 (2004), 638. doi: 10.1016/S0021-8693(03)00496-4.

[5]

K. Abdukhalikov, Defining sets of extended cyclic codes invariant under the affine group,, J. Pure Appl. Algebra, 196 (2005), 1. doi: 10.1016/j.jpaa.2004.02.016.

[6]

K. Abdukhalikov, E. Bannai and S. Suda, Association schemes related to universally optimal configurations, Kerdock codes and extremal Euclidean line-sets,, J. Combin. Theory Ser. A, 116 (2009), 434. doi: 10.1016/j.jcta.2008.07.002.

[7]

M. Bardoe and P. Sin, The permutation modules for $GL(n+1,\mathbb F_q)$ acting on $\mathbb P^n(\mathbb F_q)$ and $\mathbb F_q^{n+1}$,, J. London Math. Soc. (2), 61 (2000), 58. doi: 10.1112/S002461079900839X.

[8]

T. Berger and P. Charpin, The permutation group of affine-invariant extended cyclic codes,, IEEE Trans. Inform. Theory, 42 (1996), 2194. doi: 10.1109/18.556607.

[9]

J. T. Blackford and D. K. Ray-Chaudhuri, A transform approach to permutation groups of cyclic codes over Galois rings,, IEEE Trans. Inform. Theory, 46 (2000), 2050. doi: 10.1109/18.887849.

[10]

P. Delsarte, On cyclic codes that are invariant under the general linear group,, IEEE Trans. Inform. Theory, 16 (1970), 760.

[11]

B. K. Dey and B. S. Rajan, Affine invariant extended cyclic codes over Galois rings,, IEEE Trans. Inform. Theory, 50 (2004), 691. doi: 10.1109/TIT.2004.825044.

[12]

A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes,, IEEE Trans. Inform. Theory, 40 (1994), 301. doi: 10.1109/18.312154.

[13]

W. C. Huffman, Codes and groups,, in, 2 (1998), 1345.

[14]

T. Kasami, S. Lin and W. W. Peterson, Some results on cyclic codes which are invariant under the affine group and their applications,, Inform. Control, 11 (1967), 475. doi: 10.1016/S0019-9958(67)90691-2.

[15]

P. Sin, On codes that are invariant under the affine group,, Electron. J. Combin., 19 (2012), 1.

[1]

Thomas Feulner. The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes. Advances in Mathematics of Communications, 2009, 3 (4) : 363-383. doi: 10.3934/amc.2009.3.363

[2]

Velimir Jurdjevic. Affine-quadratic problems on Lie groups. Mathematical Control & Related Fields, 2013, 3 (3) : 347-374. doi: 10.3934/mcrf.2013.3.347

[3]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

[4]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

[5]

Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177

[6]

Cristóbal Camarero, Carmen Martínez, Ramón Beivide. Identifying codes of degree 4 Cayley graphs over Abelian groups. Advances in Mathematics of Communications, 2015, 9 (2) : 129-148. doi: 10.3934/amc.2015.9.129

[7]

Terasan Niyomsataya, Ali Miri, Monica Nevins. Decoding affine reflection group codes with trellises. Advances in Mathematics of Communications, 2012, 6 (4) : 385-400. doi: 10.3934/amc.2012.6.385

[8]

Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55

[9]

Rafael Arce-Nazario, Francis N. Castro, Jose Ortiz-Ubarri. On the covering radius of some binary cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 329-338. doi: 10.3934/amc.2017025

[10]

Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017

[11]

Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018

[12]

Heide Gluesing-Luerssen, Uwe Helmke, José Ignacio Iglesias Curto. Algebraic decoding for doubly cyclic convolutional codes. Advances in Mathematics of Communications, 2010, 4 (1) : 83-99. doi: 10.3934/amc.2010.4.83

[13]

Martianus Frederic Ezerman, San Ling, Patrick Solé, Olfa Yemen. From skew-cyclic codes to asymmetric quantum codes. Advances in Mathematics of Communications, 2011, 5 (1) : 41-57. doi: 10.3934/amc.2011.5.41

[14]

Yunwen Liu, Longjiang Qu, Chao Li. New constructions of systematic authentication codes from three classes of cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 1-16. doi: 10.3934/amc.2018001

[15]

A. Yu. Ol'shanskii and M. V. Sapir. Non-amenable finitely presented torsion-by-cyclic groups. Electronic Research Announcements, 2001, 7: 63-71.

[16]

Felix Fontein. Groups from cyclic infrastructures and Pohlig-Hellman in certain infrastructures. Advances in Mathematics of Communications, 2008, 2 (3) : 293-307. doi: 10.3934/amc.2008.2.293

[17]

Fernando Hernando, Tom Høholdt, Diego Ruano. List decoding of matrix-product codes from nested codes: An application to quasi-cyclic codes. Advances in Mathematics of Communications, 2012, 6 (3) : 259-272. doi: 10.3934/amc.2012.6.259

[18]

Washiela Fish, Jennifer D. Key, Eric Mwambene. Partial permutation decoding for simplex codes. Advances in Mathematics of Communications, 2012, 6 (4) : 505-516. doi: 10.3934/amc.2012.6.505

[19]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[20]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]