\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Small Golay sequences

Abstract / Introduction Related Papers Cited by
  • We enumerate $H$-phase Golay sequences for $H\le 36$ and lengths up to 33. Our enumeration method is based on filtering by the power spectra. Some of the hexaphase Golay sequence pairs are new. We provide a compact way to reconstruct all these Golay sequences from specific Golay arrays. The Golay arrays are part of the three-stage construction introduced by Fiedler, Jedwab, and Parker. All such minimal Golay arrays can be constructed from a small set of Golay sequence pairs with binary, quaternary, or hexaphase alphabet adjoining 0. We also prove some non-existence results for Golay sequences when $H/2$ is odd.
    Mathematics Subject Classification: Primary: 94A55, 68P30; Secondary: 05A15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. B. Borwein and R. A. Ferguson, A complete description of Golay pairs for lengths up to 100, Math. Comp., 73 (2004), 967-985.doi: 10.1090/S0025-5718-03-01576-X.

    [2]

    R. Craigen, W. Holzmann and H. Kharaghani, Complex Golay sequences: structure and applications, Discrete Math., 252 (2002), 73-89.doi: 10.1016/S0012-365X(01)00162-5.

    [3]

    J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes, IEEE Trans. Inform. Theory, 45 (1999), 2397-2417.doi: 10.1109/18.796380.

    [4]

    S. Eliahou, M. Kervaire and B. Saffari, A new restriction on the length of Golay complementary sequences, J. Comb. Theory Ser. A, 55 (1990), 49-59.doi: 10.1016/0097-3165(90)90046-Y.

    [5]

    S. Eliahou, M. Kervaire and B. Saffari, On Golay polynomial pairs, Adv. Appl. Math., 12 (1991), 235-292.doi: 10.1016/0196-8858(91)90014-A.

    [6]

    F. Fiedler and J. Jedwab, How do more Golay sequences arise? IEEE Trans. Inform. Theory, 52 (2006), 4261-4266.doi: 10.1109/TIT.2006.880024.

    [7]

    F. Fiedler, J. Jedwab and M. G. Parker, A multi-dimensional approach to the construction and enumeration of Golay complementary sequences, J. Comb. Theory Ser. A, 115 (2008), 753-776.doi: 10.1016/j.jcta.2007.10.001.

    [8]

    F. Fiedler, J. Jedwab and A. Wiebe, A new source of seed pairs for Golay sequences of length $2^m$, J. Comb. Theory Ser. A, 117 (2010), 589-597.doi: 10.1016/j.jcta.2009.12.009.

    [9]

    R. G. Gibson and J. Jedwab, Quaternary Golay sequence pairs I: even length, Des. Codes Cryptogr., 59 (2011), 131-146.doi: 10.1007/s10623-010-9471-z.

    [10]

    R. G. Gibson and J. Jedwab, Quaternary Golay sequence pairs II: odd length, Des. Codes Cryptogr., 59 (2011), 147-157.doi: 10.1007/s10623-010-9472-y.

    [11]

    M. J. E. Golay, Complementary series, IRE Trans. Inform. Theory, IT-7 (1961), 82-87.

    [12]

    W. H. Holzmann and H. Kharaghani, A computer search for complex Golay sequences, Australasian J. Comb., 10 (1994), 251-258.

    [13]

    J. Jedwab and M. G. Parker, There are no Barker arrays having more than two dimensions, Des. Codes Cryptogr., 43 (2007), 79-84.doi: 10.1007/s10623-007-9060-y.

    [14]

    J. Jedwab and M. G. Parker, Golay complementary array pairs, Des. Codes Cryptogr., 44 (2007), 209-216.doi: 10.1007/s10623-007-9088-z.

    [15]

    J. Jedwab and M. G. Parker, Binary length 10 Golay sequences are equivalent, personal communication, 2009.

    [16]

    T. Y. Lam and K. H. Leung, On vanishing sums of roots of unity, J. Algebra, 224 (2000), 91-109.doi: 10.1006/jabr.1999.8089.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(224) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return