November  2013, 7(4): 463-474. doi: 10.3934/amc.2013.7.463

($\sigma,\delta$)-codes

1. 

University of King Khalid, Abha, Saudi Arabia

2. 

Université d'Artois, Lille Nord de France, Rue Jean Souvraz, Lens, 62300, France

Received  October 2012 Published  October 2013

In this paper we introduce the notion of cyclic ($f(t),\sigma,\delta$)-codes for $f(t)\in A[t;\sigma,\delta]$. These codes generalize the $\theta$-codes as introduced by D. Boucher, F. Ulmer, W. Geiselmann [2]. We construct generic and control matrices for these codes. As a particular case the ($\sigma,\delta$)-$W$-code associated to a Wedderburn polynomial are defined and we show that their control matrices are given by generalized Vandermonde matrices. All the Wedderburn polynomials of $\mathbb F_q[t;\theta]$ are described and their control matrices are presented. A key role will be played by the pseudo-linear transformations.
Citation: M'Hammed Boulagouaz, André Leroy. ($\sigma,\delta$)-codes. Advances in Mathematics of Communications, 2013, 7 (4) : 463-474. doi: 10.3934/amc.2013.7.463
References:
[1]

S. A. Amitsur, Derivations in simple rings,, Proc. London Math. Soc., 3 (1957), 87. Google Scholar

[2]

D. Boucher, W. Geiselmann and F. Ulmer, Skew-cyclic codes,, Appl. Algebra Engin. Commun. Comp., 18 (2007), 379. doi: 10.1007/s00200-007-0043-z. Google Scholar

[3]

D. Boucher, P. Solé and F. Ulmer, Skew constacyclic codes over Galois rings,, Adv. Math. Commun., 2 (2008), 273. doi: 10.3934/amc.2008.2.273. Google Scholar

[4]

D. Boucher and F. Ulmer, Linear codes using skew polynomials with automorphisms and derivations,, Des. Codes Cryptogr., (). doi: 10.1007/s10623-012-9704-4. Google Scholar

[5]

J. Delenclos and A. Leroy, Noncommutative symmetric functions and W-polynomials,, J. Algebra Appl., 6 (2007), 815. doi: 10.1142/S021949880700251X. Google Scholar

[6]

M. Giesbrecht, Factoring in skew polynomial rings over finite fields,, J. Symb. Comp., 26 (1998), 463. doi: 10.1006/jsco.1998.0224. Google Scholar

[7]

N. Jacobson, On pseudo linear transformations,, Ann. Math., 38 (1937), 484. doi: 10.2307/1968565. Google Scholar

[8]

S. K. Jain and S. R. Nagpaul, Topics in Applied Abstract Algebra,, AMS, (2005). Google Scholar

[9]

T. Y. Lam and A. Leroy, Wedderburn polynomials over division rings, I,, J. Pure Appl. Algebra, 186 (2004), 43. doi: 10.1016/S0022-4049(03)00125-7. Google Scholar

[10]

T. Y. Lam, A. Leroy and A. Ozturk, Wedderburn polynomial over division rings, II,, Contemp. Math., 456 (2008), 73. doi: 10.1090/conm/456/08885. Google Scholar

[11]

A. Leroy, Pseudo-linear transformation and evaluation in Ore extension,, Bull. Belg. Math. Soc., 2 (1995), 321. Google Scholar

[12]

A. Leroy, Noncommutative polynomial maps,, J. Algebra Appl., 11 (2012). doi: 10.1142/S0219498812500764. Google Scholar

[13]

S. R. López-Permouth and S. Szabo, Convolutional codes with additional algebraic structures,, J. Pure Appl. Algebra, (2012). doi: 10.1016/j.jpaa.2012.09.017. Google Scholar

[14]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes,, North-Holland, (1978). Google Scholar

[15]

P. Solé, Codes over rings,, in Proceeding of the CIMPA Summer School, (2008). doi: 10.1109/TIT.2013.2277721. Google Scholar

[16]

P. Solé and O. Yemen, Binary quasi-cyclic codes of index 2 and skew polynomial rings,, Finite Fields Appl., 18 (2012), 685. doi: 10.1016/j.ffa.2012.02.002. Google Scholar

[17]

J. Wood, Code equivalence characterizes finite Frobenius rings,, Proc. Amer. Math. Soc., 136 (2008), 699. doi: 10.1090/S0002-9939-07-09164-2. Google Scholar

show all references

References:
[1]

S. A. Amitsur, Derivations in simple rings,, Proc. London Math. Soc., 3 (1957), 87. Google Scholar

[2]

D. Boucher, W. Geiselmann and F. Ulmer, Skew-cyclic codes,, Appl. Algebra Engin. Commun. Comp., 18 (2007), 379. doi: 10.1007/s00200-007-0043-z. Google Scholar

[3]

D. Boucher, P. Solé and F. Ulmer, Skew constacyclic codes over Galois rings,, Adv. Math. Commun., 2 (2008), 273. doi: 10.3934/amc.2008.2.273. Google Scholar

[4]

D. Boucher and F. Ulmer, Linear codes using skew polynomials with automorphisms and derivations,, Des. Codes Cryptogr., (). doi: 10.1007/s10623-012-9704-4. Google Scholar

[5]

J. Delenclos and A. Leroy, Noncommutative symmetric functions and W-polynomials,, J. Algebra Appl., 6 (2007), 815. doi: 10.1142/S021949880700251X. Google Scholar

[6]

M. Giesbrecht, Factoring in skew polynomial rings over finite fields,, J. Symb. Comp., 26 (1998), 463. doi: 10.1006/jsco.1998.0224. Google Scholar

[7]

N. Jacobson, On pseudo linear transformations,, Ann. Math., 38 (1937), 484. doi: 10.2307/1968565. Google Scholar

[8]

S. K. Jain and S. R. Nagpaul, Topics in Applied Abstract Algebra,, AMS, (2005). Google Scholar

[9]

T. Y. Lam and A. Leroy, Wedderburn polynomials over division rings, I,, J. Pure Appl. Algebra, 186 (2004), 43. doi: 10.1016/S0022-4049(03)00125-7. Google Scholar

[10]

T. Y. Lam, A. Leroy and A. Ozturk, Wedderburn polynomial over division rings, II,, Contemp. Math., 456 (2008), 73. doi: 10.1090/conm/456/08885. Google Scholar

[11]

A. Leroy, Pseudo-linear transformation and evaluation in Ore extension,, Bull. Belg. Math. Soc., 2 (1995), 321. Google Scholar

[12]

A. Leroy, Noncommutative polynomial maps,, J. Algebra Appl., 11 (2012). doi: 10.1142/S0219498812500764. Google Scholar

[13]

S. R. López-Permouth and S. Szabo, Convolutional codes with additional algebraic structures,, J. Pure Appl. Algebra, (2012). doi: 10.1016/j.jpaa.2012.09.017. Google Scholar

[14]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes,, North-Holland, (1978). Google Scholar

[15]

P. Solé, Codes over rings,, in Proceeding of the CIMPA Summer School, (2008). doi: 10.1109/TIT.2013.2277721. Google Scholar

[16]

P. Solé and O. Yemen, Binary quasi-cyclic codes of index 2 and skew polynomial rings,, Finite Fields Appl., 18 (2012), 685. doi: 10.1016/j.ffa.2012.02.002. Google Scholar

[17]

J. Wood, Code equivalence characterizes finite Frobenius rings,, Proc. Amer. Math. Soc., 136 (2008), 699. doi: 10.1090/S0002-9939-07-09164-2. Google Scholar

[1]

Pavel Galashin, Vladimir Zolotov. Extensions of isometric embeddings of pseudo-Euclidean metric polyhedra. Electronic Research Announcements, 2016, 23: 1-7. doi: 10.3934/era.2016.23.001

[2]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

[3]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

[4]

Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177

[5]

Mahesh Nerurkar. Forced linear oscillators and the dynamics of Euclidean group extensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1201-1234. doi: 10.3934/dcdss.2016049

[6]

Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55

[7]

Rafael Arce-Nazario, Francis N. Castro, Jose Ortiz-Ubarri. On the covering radius of some binary cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 329-338. doi: 10.3934/amc.2017025

[8]

Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017

[9]

Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018

[10]

Heide Gluesing-Luerssen, Uwe Helmke, José Ignacio Iglesias Curto. Algebraic decoding for doubly cyclic convolutional codes. Advances in Mathematics of Communications, 2010, 4 (1) : 83-99. doi: 10.3934/amc.2010.4.83

[11]

Martianus Frederic Ezerman, San Ling, Patrick Solé, Olfa Yemen. From skew-cyclic codes to asymmetric quantum codes. Advances in Mathematics of Communications, 2011, 5 (1) : 41-57. doi: 10.3934/amc.2011.5.41

[12]

Yunwen Liu, Longjiang Qu, Chao Li. New constructions of systematic authentication codes from three classes of cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 1-16. doi: 10.3934/amc.2018001

[13]

Makoto Mori. Higher order mixing property of piecewise linear transformations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 915-934. doi: 10.3934/dcds.2000.6.915

[14]

A. C. Eberhard, J-P. Crouzeix. Existence of closed graph, maximal, cyclic pseudo-monotone relations and revealed preference theory. Journal of Industrial & Management Optimization, 2007, 3 (2) : 233-255. doi: 10.3934/jimo.2007.3.233

[15]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Advances in Mathematics of Communications, 2010, 4 (1) : 69-81. doi: 10.3934/amc.2010.4.69

[16]

Fernando Hernando, Tom Høholdt, Diego Ruano. List decoding of matrix-product codes from nested codes: An application to quasi-cyclic codes. Advances in Mathematics of Communications, 2012, 6 (3) : 259-272. doi: 10.3934/amc.2012.6.259

[17]

Christine Bachoc, Gilles Zémor. Bounds for binary codes relative to pseudo-distances of $k$ points. Advances in Mathematics of Communications, 2010, 4 (4) : 547-565. doi: 10.3934/amc.2010.4.547

[18]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[19]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[20]

Leetika Kathuria, Madhu Raka. Existence of cyclic self-orthogonal codes: A note on a result of Vera Pless. Advances in Mathematics of Communications, 2012, 6 (4) : 499-503. doi: 10.3934/amc.2012.6.499

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]