
Previous Article
($\sigma,\delta$)codes
 AMC Home
 This Issue

Next Article
Empirical optimization of divisor arithmetic on hyperelliptic curves over $\mathbb{F}_{2^m}$
Correlation of binary sequence families derived from the multiplicative characters of finite fields
1.  State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, Shanxi 710071, China 
2.  Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada 
References:
[1] 
P. Deligne, La conjecture de Weil I,, Publ. Math. IHES, 43 (1974), 273. 
[2] 
S. W. Golomb and G. Gong, Signal Design with Good Correlation: for Wireless Communications, Cryptography and Radar Applications,, Cambridge University Press, (2005). doi: 10.1017/CBO9780511546907. 
[3] 
L. Goubin, C. Mauduit and A. Sárközy, Construction of large families of pseudorandom binary sequences,, J. Number Theory, 106 (2004), 56. doi: 10.1016/j.jnt.2003.12.002. 
[4] 
Y. K. Han and K. Yang, New $M$ary sequence families with low correlation and large size,, IEEE Trans. Inf. Theory, 55 (2009), 1815. doi: 10.1109/TIT.2009.2013040. 
[5] 
T. Helleseth and P. V. Kumar, Sequences with low correlation,, in Handbook of Coding Theory (eds. V. Pless and C. Huffman), (1998), 1765. 
[6] 
Y. Kim, J. Chung, J. S. No and H. Chung, New families of $M$ary sequences with low correlation constructed from Sidel'nikov sequences,, IEEE Trans. Inf. Theory, 54 (2008), 3768. doi: 10.1109/TIT.2008.926428. 
[7] 
Y. J. Kim and H. Y. Song, Cross correlation of Sidel'nikov sequences and their constant multiples,, IEEE Trans. Inf. Theory, 53 (2007), 1220. doi: 10.1109/TIT.2006.890723. 
[8] 
Y. J. Kim, H. Y. Song, G. Gong and H. Chung, Crosscorrelation of $q$ary power residue sequences of period $p$,, in Proc. IEEE ISIT, (2006), 311. doi: 10.1109/ISIT.2006.261604. 
[9] 
P. V. Kumar, T. Helleseth, A. R. Calderbank and A. R. Hammons, Large families of quaternary sequences with low correlation,, IEEE Trans. Inf. Theory, 42 (1996), 579. doi: 10.1109/18.485726. 
[10] 
V. M. Sidel'nikov, Some $k$valued pseudorandom sequences and nearly equidistant codes,, Probl. Inf. Transm., 5 (1969), 12. 
[11] 
V. M. Sidel'nikov, On mutual correlation of sequences,, Soviet Math. Dokl, 12 (1971), 197. 
[12] 
D. Wan, Generators and irreducible polynomials over finite fields,, Math. Comput., 66 (1997), 1195. doi: 10.1090/S0025571897008351. 
[13] 
Z. Wang and G. Gong, New polyphase sequence families with low correlation derived from the Weil bound of exponential sums,, IEEE Trans. Inf. Theory, 59 (2013), 3990. doi: 10.1109/TIT.2013.2243496. 
[14] 
A. Weil, On some exponential sums,, Proc. Natl. Acad. Sci. USA, 34 (1948), 204. doi: 10.1073/pnas.34.5.204. 
[15] 
L. R. Welch, Lower bounds on the minimum correlation of signal,, IEEE Trans. Inf. Theory, 20 (1974), 397. 
[16] 
N. Y. Yu and G. Gong, Multiplicative characters, the Weil Bound, and polyphase sequence families with low correlation,, IEEE Trans. Inf. Theory, 56 (2010), 6376. doi: 10.1109/TIT.2010.2079590. 
[17] 
N. Y. Yu and G. Gong, New construction of $M$ary sequence families with low correlation from the structure of Sidelnikov sequences,, IEEE Trans. Inf. Theory, 56 (2010), 4061. doi: 10.1109/TIT.2010.2050793. 
show all references
References:
[1] 
P. Deligne, La conjecture de Weil I,, Publ. Math. IHES, 43 (1974), 273. 
[2] 
S. W. Golomb and G. Gong, Signal Design with Good Correlation: for Wireless Communications, Cryptography and Radar Applications,, Cambridge University Press, (2005). doi: 10.1017/CBO9780511546907. 
[3] 
L. Goubin, C. Mauduit and A. Sárközy, Construction of large families of pseudorandom binary sequences,, J. Number Theory, 106 (2004), 56. doi: 10.1016/j.jnt.2003.12.002. 
[4] 
Y. K. Han and K. Yang, New $M$ary sequence families with low correlation and large size,, IEEE Trans. Inf. Theory, 55 (2009), 1815. doi: 10.1109/TIT.2009.2013040. 
[5] 
T. Helleseth and P. V. Kumar, Sequences with low correlation,, in Handbook of Coding Theory (eds. V. Pless and C. Huffman), (1998), 1765. 
[6] 
Y. Kim, J. Chung, J. S. No and H. Chung, New families of $M$ary sequences with low correlation constructed from Sidel'nikov sequences,, IEEE Trans. Inf. Theory, 54 (2008), 3768. doi: 10.1109/TIT.2008.926428. 
[7] 
Y. J. Kim and H. Y. Song, Cross correlation of Sidel'nikov sequences and their constant multiples,, IEEE Trans. Inf. Theory, 53 (2007), 1220. doi: 10.1109/TIT.2006.890723. 
[8] 
Y. J. Kim, H. Y. Song, G. Gong and H. Chung, Crosscorrelation of $q$ary power residue sequences of period $p$,, in Proc. IEEE ISIT, (2006), 311. doi: 10.1109/ISIT.2006.261604. 
[9] 
P. V. Kumar, T. Helleseth, A. R. Calderbank and A. R. Hammons, Large families of quaternary sequences with low correlation,, IEEE Trans. Inf. Theory, 42 (1996), 579. doi: 10.1109/18.485726. 
[10] 
V. M. Sidel'nikov, Some $k$valued pseudorandom sequences and nearly equidistant codes,, Probl. Inf. Transm., 5 (1969), 12. 
[11] 
V. M. Sidel'nikov, On mutual correlation of sequences,, Soviet Math. Dokl, 12 (1971), 197. 
[12] 
D. Wan, Generators and irreducible polynomials over finite fields,, Math. Comput., 66 (1997), 1195. doi: 10.1090/S0025571897008351. 
[13] 
Z. Wang and G. Gong, New polyphase sequence families with low correlation derived from the Weil bound of exponential sums,, IEEE Trans. Inf. Theory, 59 (2013), 3990. doi: 10.1109/TIT.2013.2243496. 
[14] 
A. Weil, On some exponential sums,, Proc. Natl. Acad. Sci. USA, 34 (1948), 204. doi: 10.1073/pnas.34.5.204. 
[15] 
L. R. Welch, Lower bounds on the minimum correlation of signal,, IEEE Trans. Inf. Theory, 20 (1974), 397. 
[16] 
N. Y. Yu and G. Gong, Multiplicative characters, the Weil Bound, and polyphase sequence families with low correlation,, IEEE Trans. Inf. Theory, 56 (2010), 6376. doi: 10.1109/TIT.2010.2079590. 
[17] 
N. Y. Yu and G. Gong, New construction of $M$ary sequence families with low correlation from the structure of Sidelnikov sequences,, IEEE Trans. Inf. Theory, 56 (2010), 4061. doi: 10.1109/TIT.2010.2050793. 
[1] 
Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209222. doi: 10.3934/amc.2014.8.209 
[2] 
Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359373. doi: 10.3934/amc.2014.8.359 
[3] 
Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199210. doi: 10.3934/amc.2015.9.199 
[4] 
Hua Liang, Jinquan Luo, Yuansheng Tang. On crosscorrelation of a binary $m$sequence of period $2^{2k}1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693703. doi: 10.3934/amc.2017050 
[5] 
Yu Zheng, Li Peng, Teturo Kamae. Characterization of noncorrelated pattern sequences and correlation dimensions. Discrete & Continuous Dynamical Systems  A, 2018, 38 (10) : 50855103. doi: 10.3934/dcds.2018223 
[6] 
Xiaoni Du, Chenhuang Wu, Wanyin Wei. An extension of binary threshold sequences from Fermat quotients. Advances in Mathematics of Communications, 2016, 10 (4) : 743752. doi: 10.3934/amc.2016038 
[7] 
Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequencyhopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 5562. doi: 10.3934/amc.2015.9.55 
[8] 
WeiWen Hu. Integervalued Alexis sequences with large zero correlation zone. Advances in Mathematics of Communications, 2017, 11 (3) : 445452. doi: 10.3934/amc.2017037 
[9] 
Xing Liu, Daiyuan Peng. Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Advances in Mathematics of Communications, 2017, 11 (1) : 151159. doi: 10.3934/amc.2017009 
[10] 
Yael BenHaim, Simon Litsyn. A new upper bound on the rate of nonbinary codes. Advances in Mathematics of Communications, 2007, 1 (1) : 8392. doi: 10.3934/amc.2007.1.83 
[11] 
Denis Dmitriev, Jonathan Jedwab. Bounds on the growth rate of the peak sidelobe level of binary sequences. Advances in Mathematics of Communications, 2007, 1 (4) : 461475. doi: 10.3934/amc.2007.1.461 
[12] 
Xiwang Cao, WunSeng Chou, Xiyong Zhang. More constructions of near optimal codebooks associated with binary sequences. Advances in Mathematics of Communications, 2017, 11 (1) : 187202. doi: 10.3934/amc.2017012 
[13] 
Harish Garg. Novel correlation coefficients under the intuitionistic multiplicative environment and their applications to decisionmaking process. Journal of Industrial & Management Optimization, 2018, 14 (4) : 15011519. doi: 10.3934/jimo.2018018 
[14] 
Xiaohui Liu, Jinhua Wang, Dianhua Wu. Two new classes of binary sequence pairs with threelevel crosscorrelation. Advances in Mathematics of Communications, 2015, 9 (1) : 117128. doi: 10.3934/amc.2015.9.117 
[15] 
Jianqin Zhou, Wanquan Liu, Xifeng Wang. Structure analysis on the kerror linear complexity for 2^{n}periodic binary sequences. Journal of Industrial & Management Optimization, 2017, 13 (4) : 17431757. doi: 10.3934/jimo.2017016 
[16] 
Zhixiong Chen, Vladimir Edemskiy, Pinhui Ke, Chenhuang Wu. On $k$error linear complexity of pseudorandom binary sequences derived from Euler quotients. Advances in Mathematics of Communications, 2018, 12 (4) : 805816. doi: 10.3934/amc.2018047 
[17] 
Jianqin Zhou, Wanquan Liu, Xifeng Wang. Complete characterization of the first descent point distribution for the kerror linear complexity of 2^{n}periodic binary sequences. Advances in Mathematics of Communications, 2017, 11 (3) : 429444. doi: 10.3934/amc.2017036 
[18] 
David Kazhdan and Yakov Varshavsky. Endoscopic decomposition of characters of certain cuspidal representations. Electronic Research Announcements, 2004, 10: 1120. 
[19] 
Lassi Roininen, Markku S. Lehtinen, Sari Lasanen, Mikko Orispää, Markku Markkanen. Correlation priors. Inverse Problems & Imaging, 2011, 5 (1) : 167184. doi: 10.3934/ipi.2011.5.167 
[20] 
Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505513. doi: 10.3934/amc.2018029 
2017 Impact Factor: 0.564
Tools
Metrics
Other articles
by authors
[Back to Top]