2013, 7(4): 503-510. doi: 10.3934/amc.2013.7.503

The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$

1. 

Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca, 20125 Milan, Italy, Italy

2. 

Lehrstuhl D für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

Received  March 2013 Revised  July 2013 Published  October 2013

A computer calculation with $M$AGMA shows that there is no extremal self-dual binary code $\mathcal{C}$ of length $72$ whose automorphism group contains the symmetric group of degree $3$, the alternating group of degree $4$ or the dihedral group of order $8$. Combining this with the known results in the literature one obtains that $Aut(\mathcal{C})$ has order at most $5$ or is isomorphic to the elementary abelian group of order $8$.
Citation: Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503
References:
[1]

C. Aguilar Melchor and P. Gaborit, On the classification of extremal $[36,18,8]$ binary self-dual codes,, IEEE Trans. Inform. Theory, 54 (2008), 4743. doi: 10.1109/TIT.2008.928976.

[2]

E. F. Assmuss and H. F. Mattson, New $5$-designs,, J. Combin. Theory, 6 (1969), 122. doi: 10.1016/S0021-9800(69)80115-8.

[3]

M. Borello, The automorphism group of a self-dual $[72,36,16]$ binary code does not contain elements of order $6$,, IEEE Trans. Inform. Theory, 58 (2012), 7240. doi: 10.1109/TIT.2012.2211095.

[4]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language,, J. Symbol. Comput., 24 (1997), 235. doi: 10.1006/jsco.1996.0125.

[5]

S. Bouyuklieva, On the automorphisms of order $2$ with fixed points for the extremal self-dual codes of length $24m$,, Des. Codes Cryptogr., 25 (2002), 5. doi: 10.1023/A:1012598832377.

[6]

S. Bouyuklieva, On the automorphism group of a doubly even $(72,36,16)$ code,, IEEE Trans. Inform. Theory, 50 (2004), 544. doi: 10.1109/TIT.2004.825252.

[7]

L. E. Danielsen and M. G. Parker, On the classification of all self-dual additive codes over GF(4) of length up to 12,, J. Combin. Theory Ser. A, 112 (2006), 1351. doi: 10.1016/j.jcta.2005.12.004.

[8]

T. Feulner and G. Nebe, The automorphism group of an extremal $[72,36,16]$ code does not contain $Z_7$, $Z_3\times Z_3$, or $D_{10}$,, IEEE Trans. Inform. Theory, 58 (2012), 6916. doi: 10.1109/TIT.2012.2208176.

[9]

W. C. Huffman, Automorphisms of codes with application to extremal doubly even codes of length $48$,, IEEE Trans. Inform. Theory, IT-28 (1982), 511. doi: 10.1109/TIT.1982.1056499.

[10]

C. L. Mallows and N. J. A. Sloane, An upper bound for self-dual codes,, Inform. Control, 22 (1973), 188. doi: 10.1016/S0019-9958(73)90273-8.

[11]

G. Nebe, An extremal $[72,36,16]$ binary code has no automorphism group containing $Z_2\times Z_4$, $Q_8$, or $Z_{10}$,, Finite Fields Appl., 18 (2012), 563. doi: 10.1016/j.ffa.2011.12.001.

[12]

E. M. Rains, Shadow bounds for self-dual codes,, IEEE Trans. Inform. Theory, 44 (1998), 134. doi: 10.1109/18.651000.

[13]

N. J. A. Sloane, Is there a $(72; 36)$ $d = 16$ self-dual code?,, IEEE Trans. Inform. Theory, 2 (1973).

show all references

References:
[1]

C. Aguilar Melchor and P. Gaborit, On the classification of extremal $[36,18,8]$ binary self-dual codes,, IEEE Trans. Inform. Theory, 54 (2008), 4743. doi: 10.1109/TIT.2008.928976.

[2]

E. F. Assmuss and H. F. Mattson, New $5$-designs,, J. Combin. Theory, 6 (1969), 122. doi: 10.1016/S0021-9800(69)80115-8.

[3]

M. Borello, The automorphism group of a self-dual $[72,36,16]$ binary code does not contain elements of order $6$,, IEEE Trans. Inform. Theory, 58 (2012), 7240. doi: 10.1109/TIT.2012.2211095.

[4]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language,, J. Symbol. Comput., 24 (1997), 235. doi: 10.1006/jsco.1996.0125.

[5]

S. Bouyuklieva, On the automorphisms of order $2$ with fixed points for the extremal self-dual codes of length $24m$,, Des. Codes Cryptogr., 25 (2002), 5. doi: 10.1023/A:1012598832377.

[6]

S. Bouyuklieva, On the automorphism group of a doubly even $(72,36,16)$ code,, IEEE Trans. Inform. Theory, 50 (2004), 544. doi: 10.1109/TIT.2004.825252.

[7]

L. E. Danielsen and M. G. Parker, On the classification of all self-dual additive codes over GF(4) of length up to 12,, J. Combin. Theory Ser. A, 112 (2006), 1351. doi: 10.1016/j.jcta.2005.12.004.

[8]

T. Feulner and G. Nebe, The automorphism group of an extremal $[72,36,16]$ code does not contain $Z_7$, $Z_3\times Z_3$, or $D_{10}$,, IEEE Trans. Inform. Theory, 58 (2012), 6916. doi: 10.1109/TIT.2012.2208176.

[9]

W. C. Huffman, Automorphisms of codes with application to extremal doubly even codes of length $48$,, IEEE Trans. Inform. Theory, IT-28 (1982), 511. doi: 10.1109/TIT.1982.1056499.

[10]

C. L. Mallows and N. J. A. Sloane, An upper bound for self-dual codes,, Inform. Control, 22 (1973), 188. doi: 10.1016/S0019-9958(73)90273-8.

[11]

G. Nebe, An extremal $[72,36,16]$ binary code has no automorphism group containing $Z_2\times Z_4$, $Q_8$, or $Z_{10}$,, Finite Fields Appl., 18 (2012), 563. doi: 10.1016/j.ffa.2011.12.001.

[12]

E. M. Rains, Shadow bounds for self-dual codes,, IEEE Trans. Inform. Theory, 44 (1998), 134. doi: 10.1109/18.651000.

[13]

N. J. A. Sloane, Is there a $(72; 36)$ $d = 16$ self-dual code?,, IEEE Trans. Inform. Theory, 2 (1973).

[1]

Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261

[2]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[3]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[4]

Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23

[5]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[6]

Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433

[7]

Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311

[8]

Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219

[9]

W. Cary Huffman. Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order. Advances in Mathematics of Communications, 2013, 7 (1) : 57-90. doi: 10.3934/amc.2013.7.57

[10]

W. Cary Huffman. Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order. Advances in Mathematics of Communications, 2007, 1 (3) : 357-398. doi: 10.3934/amc.2007.1.357

[11]

Nikolay Yankov. Self-dual [62, 31, 12] and [64, 32, 12] codes with an automorphism of order 7. Advances in Mathematics of Communications, 2014, 8 (1) : 73-81. doi: 10.3934/amc.2014.8.73

[12]

Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027

[13]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[14]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[15]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[16]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

[17]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[18]

Katherine Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415-436. doi: 10.3934/amc.2015.9.415

[19]

Jongmin Han, Juhee Sohn. On the self-dual Einstein-Maxwell-Higgs equation on compact surfaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 819-839. doi: 10.3934/dcds.2019034

[20]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (3)

[Back to Top]