November  2014, 8(4): 375-387. doi: 10.3934/amc.2014.8.375

Trisection for supersingular genus $2$ curves in characteristic $2$

1. 

Departament de Matemàtica, Universitat de Lleida, Jaume II 69, Lleida 25001, Spain

2. 

Departamento de Matemática, Universidad del Bío-Bío, Avenida Collao 1202, Concepción, Chile

Received  January 2014 Revised  June 2014 Published  November 2014

By reversing reduction in divisor class arithmetic we provide efficient trisection algorithms for supersingular Jacobians of genus $2$ curves over finite fields of characteristic $2$. With our technique we obtain new results for these Jacobians: we show how to find their $3$-torsion subgroup, we prove there is none with $3$-torsion subgroup of rank $3$ and we prove that the maximal $3$-power order subgroup is isomorphic to either $\mathbb{Z}/3^{v}\mathbb{Z}$ or $(\mathbb{Z}/3^{\frac v2}\mathbb{Z})^2$ or $(\mathbb{Z}/3^{\frac v4}\mathbb{Z})^4$, where $v$ is the $3$-adic valuation $v_{3}$(#Jac(C)$(\mathbb{F}_{2^m})$). Ours are the first trisection formulae available in literature.
Citation: Josep M. Miret, Jordi Pujolàs, Nicolas Thériault. Trisection for supersingular genus $2$ curves in characteristic $2$. Advances in Mathematics of Communications, 2014, 8 (4) : 375-387. doi: 10.3934/amc.2014.8.375
References:
[1]

D. Cantor, Computing in the Jacobian of a Hyperelliptic curve,, Math. Comp., 48 (1987), 95.  doi: 10.1090/S0025-5718-1987-0866101-0.  Google Scholar

[2]

I. Kitamura, M. Katagi and T. Takagi, A complete divisor class halving algorithm for hyperelliptic curve cryptosystems of genus two,, in Information Security and Privacy, (2005), 146.  doi: 10.1007/11506157_13.  Google Scholar

[3]

J. Miret, J. Pujolàs and A. Rio, Explicit 2-power torsion of genus $2$ curves over finite fields,, Adv. Math. Commun., 4 (2010), 155.  doi: 10.3934/amc.2010.4.155.  Google Scholar

[4]

F. Oort, Subvarieties of moduli spaces,, Invent. Math., 24 (1974), 95.  doi: 10.1007/BF01404301.  Google Scholar

[5]

R. Schoof, Nonsingular plane cubic curves over finite fields,, J. Combin. Theory Ser. A, 46 (1987), 183.  doi: 10.1016/0097-3165(87)90003-3.  Google Scholar

[6]

C. Xing, On supersingular abelian varieties of dimension two over finite fields,, Finite Fields Appl., 2 (1996), 407.  doi: 10.1006/ffta.1996.0024.  Google Scholar

show all references

References:
[1]

D. Cantor, Computing in the Jacobian of a Hyperelliptic curve,, Math. Comp., 48 (1987), 95.  doi: 10.1090/S0025-5718-1987-0866101-0.  Google Scholar

[2]

I. Kitamura, M. Katagi and T. Takagi, A complete divisor class halving algorithm for hyperelliptic curve cryptosystems of genus two,, in Information Security and Privacy, (2005), 146.  doi: 10.1007/11506157_13.  Google Scholar

[3]

J. Miret, J. Pujolàs and A. Rio, Explicit 2-power torsion of genus $2$ curves over finite fields,, Adv. Math. Commun., 4 (2010), 155.  doi: 10.3934/amc.2010.4.155.  Google Scholar

[4]

F. Oort, Subvarieties of moduli spaces,, Invent. Math., 24 (1974), 95.  doi: 10.1007/BF01404301.  Google Scholar

[5]

R. Schoof, Nonsingular plane cubic curves over finite fields,, J. Combin. Theory Ser. A, 46 (1987), 183.  doi: 10.1016/0097-3165(87)90003-3.  Google Scholar

[6]

C. Xing, On supersingular abelian varieties of dimension two over finite fields,, Finite Fields Appl., 2 (1996), 407.  doi: 10.1006/ffta.1996.0024.  Google Scholar

[1]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[2]

Roderick S. C. Wong, H. Y. Zhang. On the connection formulas of the third Painlevé transcendent. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 541-560. doi: 10.3934/dcds.2009.23.541

[3]

Akbar Mahmoodi Rishakani, Seyed Mojtaba Dehnavi, Mohmmadreza Mirzaee Shamsabad, Nasour Bagheri. Cryptographic properties of cyclic binary matrices. Advances in Mathematics of Communications, 2021, 15 (2) : 311-327. doi: 10.3934/amc.2020068

[4]

Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007

[5]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[6]

Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605

[7]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[8]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[9]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[10]

Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems & Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047

[11]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[12]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[13]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[14]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[15]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[16]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[17]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[18]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[19]

Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158

[20]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (3)

[Back to Top]