-
Previous Article
The geometry of some parameterizations and encodings
- AMC Home
- This Issue
-
Next Article
Subexponential time relations in the class group of large degree number fields
Some remarks on primality proving and elliptic curves
1. | Department of Mathematics, University of California, Irvine, Irvine, CA 92697-3875, United States |
References:
[1] |
A. Abatzoglou, A CM elliptic curve framework for deterministic primality proving on numbers of special form,, Ph.D thesis, (2014). Google Scholar |
[2] |
A. Abatzoglou, A. Silverberg, A. V. Sutherland and A. Wong, available online at, , (). Google Scholar |
[3] |
A. Abatzoglou, A. Silverberg, A. V. Sutherland and A. Wong, available online at, , (). Google Scholar |
[4] |
A. Abatzoglou, A. Silverberg, A. V. Sutherland and A. Wong, Deterministic elliptic curve primality proving for a special sequence of numbers,, in Algorithmic Number Theory, (2013), 1.
doi: 10.2140/obs.2013.1.1. |
[5] |
A. Abatzoglou, A. Silverberg, A. V. Sutherland and A. Wong, A framework for deterministic primality proving using elliptic curves with complex multiplication,, Math. Comp., (). Google Scholar |
[6] |
M. Agrawal, N. Kayal and N. Saxena, Primes is in P,, Ann. Math., 160 (2004), 781.
doi: 10.4007/annals.2004.160.781. |
[7] |
A. O. L. Atkin and F. Morain, Elliptic curves and primality proving,, Math. Comp., 61 (1993), 29.
doi: 10.1090/S0025-5718-1993-1199989-X. |
[8] |
W. Bosma, Primality Testing with Elliptic Curves,, Doctoraalscriptie Report, (1985), 85. Google Scholar |
[9] |
D. V. Chudnovsky and G. V. Chudnovsky, Sequences of numbers generated by addition in formal groups and new primality and factorization tests,, Adv. Appl. Math., 7 (1986), 385.
doi: 10.1016/0196-8858(86)90023-0. |
[10] |
R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Second edition,, Springer, (2005). Google Scholar |
[11] |
R. Denomme and G. Savin, Elliptic curve primality tests for Fermat and related primes,, J. Number Theory, 128 (2008), 2398.
doi: 10.1016/j.jnt.2007.12.009. |
[12] |
S. Goldwasser and J. Kilian, Almost all primes can be quickly certified,, in STOC '86 - Proc. 18th Annual ACM Symp. Theory Computing, (1986), 316.
doi: 10.1145/12130.12162. |
[13] |
S. Goldwasser and J. Kilian, Primality testing using elliptic curves,, J. ACM, 46 (1999), 450.
doi: 10.1145/320211.320213. |
[14] |
D. M. Gordon, Pseudoprimes on elliptic curves,, in Théorie des nombres, (1989), 290.
|
[15] |
B. H. Gross, Arithmetic on Elliptic Curves with Complex Multiplication,, Springer, (1980).
|
[16] |
B. H. Gross, Minimal models for elliptic curves with complex multiplication,, Compositio Math., 45 (1982), 155.
|
[17] |
B. H. Gross, An elliptic curve test for Mersenne primes,, J. Number Theory, 110 (2005), 114.
doi: 10.1016/j.jnt.2003.11.011. |
[18] |
A. Gurevich and B. Kunyavskiĭ, Primality testing through algebraic groups,, Arch. Math. (Basel), 93 (2009), 555.
doi: 10.1007/s00013-009-0065-9. |
[19] |
A. Gurevich and B. Kunyavskiĭ, Deterministic primality tests based on tori and elliptic curves,, Finite Fields Appl., 18 (2012), 222.
doi: 10.1016/j.ffa.2011.07.011. |
[20] |
M. Kida, Primality tests using algebraic groups,, Exper. Math., 13 (2004), 421.
doi: 10.1080/10586458.2004.10504550. |
[21] |
H. W. Lenstra, Jr., Elliptic curves and number-theoretic algorithms,, in Proc. Int. Congr. Math., (1987), 99.
|
[22] |
H. W. Lenstra, Jr., Factoring integers with elliptic curves,, Ann. Math., 126 (1987), 649.
doi: 10.2307/1971363. |
[23] |
H. W. Lenstra, Jr. and C. Pomerance, Primality testing with Gaussian periods,, available online at , (2011).
|
[24] |
C. Pomerance, Primality testing: variations on a theme of Lucas,, Congr. Numer., 201 (2010), 301.
|
[25] |
K. Rubin and A. Silverberg, Point counting on reductions of CM elliptic curves,, J. Number Theory, 129 (2009), 2903.
doi: 10.1016/j.jnt.2009.01.020. |
[26] |
R. Schoof, Elliptic curves over finite fields and the computation of square roots mod $p$,, Math. Comp., 44 (1985), 483.
doi: 10.2307/2007968. |
[27] |
A. Silverberg, Group order formulas for reductions of CM elliptic curves,, in Proc. Conf. Arith. Geom. Crypt. Coding Theory, (2010), 107.
doi: 10.1090/conm/521/10277. |
[28] |
H. Stark, Counting points on CM elliptic curves,, Rocky Mountain J. Math., 26 (1996), 1115.
doi: 10.1216/rmjm/1181072041. |
[29] |
Y. Tsumura, Primality tests for $2^p + 2^{\frac{p+1}{2}} + 1$ using elliptic curves,, Proc. Amer. Math. Soc., 139 (2011), 2697.
doi: 10.1090/S0002-9939-2011-10839-6. |
[30] |
A. Wong, Primality Test Using Elliptic Curves with Complex Multiplication by $\mathbbQ(\sqrt{-7})$,, Ph.D thesis, (2013).
|
show all references
References:
[1] |
A. Abatzoglou, A CM elliptic curve framework for deterministic primality proving on numbers of special form,, Ph.D thesis, (2014). Google Scholar |
[2] |
A. Abatzoglou, A. Silverberg, A. V. Sutherland and A. Wong, available online at, , (). Google Scholar |
[3] |
A. Abatzoglou, A. Silverberg, A. V. Sutherland and A. Wong, available online at, , (). Google Scholar |
[4] |
A. Abatzoglou, A. Silverberg, A. V. Sutherland and A. Wong, Deterministic elliptic curve primality proving for a special sequence of numbers,, in Algorithmic Number Theory, (2013), 1.
doi: 10.2140/obs.2013.1.1. |
[5] |
A. Abatzoglou, A. Silverberg, A. V. Sutherland and A. Wong, A framework for deterministic primality proving using elliptic curves with complex multiplication,, Math. Comp., (). Google Scholar |
[6] |
M. Agrawal, N. Kayal and N. Saxena, Primes is in P,, Ann. Math., 160 (2004), 781.
doi: 10.4007/annals.2004.160.781. |
[7] |
A. O. L. Atkin and F. Morain, Elliptic curves and primality proving,, Math. Comp., 61 (1993), 29.
doi: 10.1090/S0025-5718-1993-1199989-X. |
[8] |
W. Bosma, Primality Testing with Elliptic Curves,, Doctoraalscriptie Report, (1985), 85. Google Scholar |
[9] |
D. V. Chudnovsky and G. V. Chudnovsky, Sequences of numbers generated by addition in formal groups and new primality and factorization tests,, Adv. Appl. Math., 7 (1986), 385.
doi: 10.1016/0196-8858(86)90023-0. |
[10] |
R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Second edition,, Springer, (2005). Google Scholar |
[11] |
R. Denomme and G. Savin, Elliptic curve primality tests for Fermat and related primes,, J. Number Theory, 128 (2008), 2398.
doi: 10.1016/j.jnt.2007.12.009. |
[12] |
S. Goldwasser and J. Kilian, Almost all primes can be quickly certified,, in STOC '86 - Proc. 18th Annual ACM Symp. Theory Computing, (1986), 316.
doi: 10.1145/12130.12162. |
[13] |
S. Goldwasser and J. Kilian, Primality testing using elliptic curves,, J. ACM, 46 (1999), 450.
doi: 10.1145/320211.320213. |
[14] |
D. M. Gordon, Pseudoprimes on elliptic curves,, in Théorie des nombres, (1989), 290.
|
[15] |
B. H. Gross, Arithmetic on Elliptic Curves with Complex Multiplication,, Springer, (1980).
|
[16] |
B. H. Gross, Minimal models for elliptic curves with complex multiplication,, Compositio Math., 45 (1982), 155.
|
[17] |
B. H. Gross, An elliptic curve test for Mersenne primes,, J. Number Theory, 110 (2005), 114.
doi: 10.1016/j.jnt.2003.11.011. |
[18] |
A. Gurevich and B. Kunyavskiĭ, Primality testing through algebraic groups,, Arch. Math. (Basel), 93 (2009), 555.
doi: 10.1007/s00013-009-0065-9. |
[19] |
A. Gurevich and B. Kunyavskiĭ, Deterministic primality tests based on tori and elliptic curves,, Finite Fields Appl., 18 (2012), 222.
doi: 10.1016/j.ffa.2011.07.011. |
[20] |
M. Kida, Primality tests using algebraic groups,, Exper. Math., 13 (2004), 421.
doi: 10.1080/10586458.2004.10504550. |
[21] |
H. W. Lenstra, Jr., Elliptic curves and number-theoretic algorithms,, in Proc. Int. Congr. Math., (1987), 99.
|
[22] |
H. W. Lenstra, Jr., Factoring integers with elliptic curves,, Ann. Math., 126 (1987), 649.
doi: 10.2307/1971363. |
[23] |
H. W. Lenstra, Jr. and C. Pomerance, Primality testing with Gaussian periods,, available online at , (2011).
|
[24] |
C. Pomerance, Primality testing: variations on a theme of Lucas,, Congr. Numer., 201 (2010), 301.
|
[25] |
K. Rubin and A. Silverberg, Point counting on reductions of CM elliptic curves,, J. Number Theory, 129 (2009), 2903.
doi: 10.1016/j.jnt.2009.01.020. |
[26] |
R. Schoof, Elliptic curves over finite fields and the computation of square roots mod $p$,, Math. Comp., 44 (1985), 483.
doi: 10.2307/2007968. |
[27] |
A. Silverberg, Group order formulas for reductions of CM elliptic curves,, in Proc. Conf. Arith. Geom. Crypt. Coding Theory, (2010), 107.
doi: 10.1090/conm/521/10277. |
[28] |
H. Stark, Counting points on CM elliptic curves,, Rocky Mountain J. Math., 26 (1996), 1115.
doi: 10.1216/rmjm/1181072041. |
[29] |
Y. Tsumura, Primality tests for $2^p + 2^{\frac{p+1}{2}} + 1$ using elliptic curves,, Proc. Amer. Math. Soc., 139 (2011), 2697.
doi: 10.1090/S0002-9939-2011-10839-6. |
[30] |
A. Wong, Primality Test Using Elliptic Curves with Complex Multiplication by $\mathbbQ(\sqrt{-7})$,, Ph.D thesis, (2013).
|
[1] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[2] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[3] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[4] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[5] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[6] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]