2015, 9(1): 23-36. doi: 10.3934/amc.2015.9.23

Some new classes of cyclic codes with three or six weights

1. 

Department of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074, China

2. 

Department of Informatics, University of Bergen, N-5020 Bergen, Norway

3. 

CIPSI, Department of Electrical Engineering and Computer Science, University of Stavanger, 4036 Stavanger, Norway

Received  December 2013 Revised  July 2014 Published  February 2015

In this paper, a class of three-weight cyclic codes over prime fields $\mathbb{F}_p$ of odd order whose duals have two zeros, and a class of six-weight cyclic codes whose duals have three zeros are presented. The weight distributions of these cyclic codes are derived.
Citation: Yongbo Xia, Tor Helleseth, Chunlei Li. Some new classes of cyclic codes with three or six weights. Advances in Mathematics of Communications, 2015, 9 (1) : 23-36. doi: 10.3934/amc.2015.9.23
References:
[1]

C. Carlet, C. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes,, IEEE Trans. Inf. Theory, 51 (2005), 2089. doi: 10.1109/TIT.2005.847722.

[2]

S. T. Choi, J. Y. Kim and J. S. No, On the cross-correlation of a p-ary m-sequence and its decimated sequences by $d = \frac{p^n+1}{p^k+1} + \frac{p^n-1}{2}$,, IEICE Trans. Comm., (2013), 2190.

[3]

P. Delsarte, On subfield subcodes of modified Reed-Solomon codes,, IEEE Trans. Inf. Theory, 21 (1975), 575.

[4]

C. Ding, Y. Gao and Z. Zhou, Five families of three-weight ternary cyclic codes and their duals,, IEEE Trans. Inf. Theory, 59 (2013), 7940. doi: 10.1109/TIT.2013.2281205.

[5]

K. Feng and J. Luo, Value distribution of exponential sums from perfect nonlinear functions and their applications,, IEEE Trans. Inf. Theory, 53 (2007), 3035. doi: 10.1109/TIT.2007.903153.

[6]

K. Feng and J. Luo, Weight distribution of some reducible cyclic codes,, Finite Fields Appl., 14 (2008), 390. doi: 10.1016/j.ffa.2007.03.003.

[7]

Z. Hu, X. Li, D. Mills, E. N. Müller, W. Sun, W. Willems, Y. Yang and Z. Zhang, On the crosscorrelation of sequences with the decimation factor $d = \frac{p^n+1}{p+1} - \frac{p^n-1}{2}$,, Appl. Algebra Eng. Commun. Comput., (2001), 255. doi: 10.1007/s002000100073.

[8]

C. Li, N. Li, T. Helleseth and C. Ding, On the weight distributions of several classes of cyclic codes from APN monomials,, IEEE Trans. Inf. Theory, 60 (2014), 4710. doi: 10.1109/TIT.2014.2329694.

[9]

R. Lidl and H. Niederreiter, Finite fields,, in Encyclopedia of Mathematics and Its Applications, (1983).

[10]

Y. Liu, H. Yan and C. Liu, A class of six-weight cyclic codes and their weight distribution,, Des. Codes Cryptogr., (). doi: 10.1007/s10623-014-9984-y.

[11]

J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes,, IEEE Trans. Inf. Theory, 54 (2008), 5332. doi: 10.1109/TIT.2008.2006424.

[12]

C. Ma, L. Zeng, Y. Liu, D. Feng and C. Ding, The weight enumerator of a class of cyclic codes,, IEEE Trans. Inf. Theory, 57 (2011), 397. doi: 10.1109/TIT.2010.2090272.

[13]

E. N. Müller, On the crosscorrelation of sequences over $GF(p)$ with short periods,, IEEE Trans. Inf. Theory, 45 (1999), 289. doi: 10.1109/18.746820.

[14]

G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes,, Inform. Control, 8 (1965), 170.

[15]

B. Wang, C. Tang, Y. Qi, Y. Yang and M. Xu, The weight distributions of cyclic codes and elliptic curves,, IEEE Trans. Inf. Theory, 58 (2012), 7253. doi: 10.1109/TIT.2012.2210386.

[16]

Y. Xia, X. Zeng and L. Hu, Further crosscorrelation properties of sequences with the decimation factor $d = \frac{p^n+1}{p+1} - \frac{p^n-1}{2}$,, Appl. Algebra Eng. Commun. Comput., (2010), 329. doi: 10.1007/s00200-010-0128-y.

[17]

Z. Zhou and C. Ding, Seven families of three-weight cyclic codes,, IEEE Trans. Commun., 61 (2013), 4120.

[18]

Z. Zhou and C. Ding, A class of three-weight cyclic codes,, Finite Fields Appl., 25 (2014), 79. doi: 10.1016/j.ffa.2013.08.005.

[19]

Z. Zhou, C. Ding, J. Luo and A. Zhang, A family of five-weight cyclic codes and their weight enumerators,, IEEE Trans. Inf. Theory, 59 (2013), 6674. doi: 10.1109/TIT.2013.2267722.

show all references

References:
[1]

C. Carlet, C. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes,, IEEE Trans. Inf. Theory, 51 (2005), 2089. doi: 10.1109/TIT.2005.847722.

[2]

S. T. Choi, J. Y. Kim and J. S. No, On the cross-correlation of a p-ary m-sequence and its decimated sequences by $d = \frac{p^n+1}{p^k+1} + \frac{p^n-1}{2}$,, IEICE Trans. Comm., (2013), 2190.

[3]

P. Delsarte, On subfield subcodes of modified Reed-Solomon codes,, IEEE Trans. Inf. Theory, 21 (1975), 575.

[4]

C. Ding, Y. Gao and Z. Zhou, Five families of three-weight ternary cyclic codes and their duals,, IEEE Trans. Inf. Theory, 59 (2013), 7940. doi: 10.1109/TIT.2013.2281205.

[5]

K. Feng and J. Luo, Value distribution of exponential sums from perfect nonlinear functions and their applications,, IEEE Trans. Inf. Theory, 53 (2007), 3035. doi: 10.1109/TIT.2007.903153.

[6]

K. Feng and J. Luo, Weight distribution of some reducible cyclic codes,, Finite Fields Appl., 14 (2008), 390. doi: 10.1016/j.ffa.2007.03.003.

[7]

Z. Hu, X. Li, D. Mills, E. N. Müller, W. Sun, W. Willems, Y. Yang and Z. Zhang, On the crosscorrelation of sequences with the decimation factor $d = \frac{p^n+1}{p+1} - \frac{p^n-1}{2}$,, Appl. Algebra Eng. Commun. Comput., (2001), 255. doi: 10.1007/s002000100073.

[8]

C. Li, N. Li, T. Helleseth and C. Ding, On the weight distributions of several classes of cyclic codes from APN monomials,, IEEE Trans. Inf. Theory, 60 (2014), 4710. doi: 10.1109/TIT.2014.2329694.

[9]

R. Lidl and H. Niederreiter, Finite fields,, in Encyclopedia of Mathematics and Its Applications, (1983).

[10]

Y. Liu, H. Yan and C. Liu, A class of six-weight cyclic codes and their weight distribution,, Des. Codes Cryptogr., (). doi: 10.1007/s10623-014-9984-y.

[11]

J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes,, IEEE Trans. Inf. Theory, 54 (2008), 5332. doi: 10.1109/TIT.2008.2006424.

[12]

C. Ma, L. Zeng, Y. Liu, D. Feng and C. Ding, The weight enumerator of a class of cyclic codes,, IEEE Trans. Inf. Theory, 57 (2011), 397. doi: 10.1109/TIT.2010.2090272.

[13]

E. N. Müller, On the crosscorrelation of sequences over $GF(p)$ with short periods,, IEEE Trans. Inf. Theory, 45 (1999), 289. doi: 10.1109/18.746820.

[14]

G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes,, Inform. Control, 8 (1965), 170.

[15]

B. Wang, C. Tang, Y. Qi, Y. Yang and M. Xu, The weight distributions of cyclic codes and elliptic curves,, IEEE Trans. Inf. Theory, 58 (2012), 7253. doi: 10.1109/TIT.2012.2210386.

[16]

Y. Xia, X. Zeng and L. Hu, Further crosscorrelation properties of sequences with the decimation factor $d = \frac{p^n+1}{p+1} - \frac{p^n-1}{2}$,, Appl. Algebra Eng. Commun. Comput., (2010), 329. doi: 10.1007/s00200-010-0128-y.

[17]

Z. Zhou and C. Ding, Seven families of three-weight cyclic codes,, IEEE Trans. Commun., 61 (2013), 4120.

[18]

Z. Zhou and C. Ding, A class of three-weight cyclic codes,, Finite Fields Appl., 25 (2014), 79. doi: 10.1016/j.ffa.2013.08.005.

[19]

Z. Zhou, C. Ding, J. Luo and A. Zhang, A family of five-weight cyclic codes and their weight enumerators,, IEEE Trans. Inf. Theory, 59 (2013), 6674. doi: 10.1109/TIT.2013.2267722.

[1]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[2]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[3]

Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017

[4]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[5]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[6]

Denis S. Krotov, Patric R. J.  Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013

[7]

Yuk L. Yung, Cameron Taketa, Ross Cheung, Run-Lie Shia. Infinite sum of the product of exponential and logarithmic functions, its analytic continuation, and application. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 229-248. doi: 10.3934/dcdsb.2010.13.229

[8]

Chengju Li, Qin Yue, Ziling Heng. Weight distributions of a class of cyclic codes from $\Bbb F_l$-conjugates. Advances in Mathematics of Communications, 2015, 9 (3) : 341-352. doi: 10.3934/amc.2015.9.341

[9]

Pankaj Kumar, Monika Sangwan, Suresh Kumar Arora. The weight distributions of some irreducible cyclic codes of length $p^n$ and $2p^n$. Advances in Mathematics of Communications, 2015, 9 (3) : 277-289. doi: 10.3934/amc.2015.9.277

[10]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[11]

Libin Mou, Jiongmin Yong. Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method. Journal of Industrial & Management Optimization, 2006, 2 (1) : 95-117. doi: 10.3934/jimo.2006.2.95

[12]

Jiyoung Han, Seonhee Lim, Keivan Mallahi-Karai. Asymptotic distribution of values of isotropic here quadratic forms at S-integral points. Journal of Modern Dynamics, 2017, 11: 501-550. doi: 10.3934/jmd.2017020

[13]

Kai Liu, Zhi Li. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3551-3573. doi: 10.3934/dcdsb.2016110

[14]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[15]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[16]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[17]

Eunju Hwang, Kyung Jae Kim, Bong Dae Choi. Delay distribution and loss probability of bandwidth requests under truncated binary exponential backoff mechanism in IEEE 802.16e over Gilbert-Elliot error channel. Journal of Industrial & Management Optimization, 2009, 5 (3) : 525-540. doi: 10.3934/jimo.2009.5.525

[18]

Kevin Ford. The distribution of totients. Electronic Research Announcements, 1998, 4: 27-34.

[19]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[20]

David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117

2016 Impact Factor: 0.8

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]