2015, 9(3): 375-390. doi: 10.3934/amc.2015.9.375

Some new results on cross correlation of $p$-ary $m$-sequence and its decimated sequence

1. 

School of Mathemetics & Computation Science, Anqing Normal University, Anqing, Anhui 246133, China

2. 

Department of Mathematic and Statistics, Centtal China Normal University, Wuhan, Hubei 430079, China

3. 

Department of Mathematic Sciences, Yangzhou University, Yangzhou, Jiangsu 225002, China, China

Received  September 2014 Published  July 2015

Let $p$ be an odd prime, $n=2m$, and $n/\gcd(k,n)$ be odd. In this paper, we study the cross correlation between a $p$-ary $m$-sequence $(s_{t})$ of period $p^{n}-1$ and its decimated sequence $(s_{dt})$ where $d$ satisfies $d(p^k+1)\equiv p^m+1 \pmod {p^n-1}$. Our results show that the cross-correlation function is six-valued and the distribution of the cross correlation is also completely determined.
Citation: Wenbing Chen, Jinquan Luo, Yuansheng Tang, Quanquan Liu. Some new results on cross correlation of $p$-ary $m$-sequence and its decimated sequence. Advances in Mathematics of Communications, 2015, 9 (3) : 375-390. doi: 10.3934/amc.2015.9.375
References:
[1]

A. W. Bluher, On $x^{q+1}+ax+b$,, Finite Fields Appl., 10 (2004), 285. doi: 10.1016/j.ffa.2003.08.004.

[2]

W. Chen, J. Luo and Y. Tang, Exponential sums from half quadratic forms and its applications,, in Proc. ISIT'14, (2014), 3145.

[3]

S. T. Choi, J. S. No and H. Chung, On the cross-correlation of a ternary m-sequence of period $3^{4k+2}-1$ and its decimated sequence by $(3^{2k+1}+1)^{2}$ over 8,, in Proc. ISIT'10, (2010), 1268.

[4]

S. T. Choi, J. S. No and H. Chung, On the cross-correlation of a $p$-ary m-sequence of period $p^{2m}-1$ and its decimated sequence by $\frac{(p^m+1)^2}{2(p+1)}$,, IEEE Trans. Inf. Theory, 58 (2012), 1873. doi: 10.1109/TIT.2011.2177573.

[5]

H. Dobbertin, P. Felke and T. Helleseth, Niho type cross correlation functions via Dickson polynomials and Kloosterman sums,, IEEE Trans. Inf. Theory, 52 (2006), 613. doi: 10.1109/TIT.2005.862094.

[6]

T. Helleseth, Some results about the cross-correlation function between two maximal-linear sequence,, Discrete Math., 16 (1976), 209.

[7]

R. Lidl and H. Niederreiter, Finite Fields,, Addison-Wesley, (1983).

[8]

J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes,, IEEE Trans. Inf. Theory, 54 (2008), 5332. doi: 10.1109/TIT.2008.2006424.

[9]

J. Luo and K. Feng, Cyclic codes and sequences from generalized Coulter-Matthews function,, IEEE Trans. Inf. Theory, 54 (2008), 5345. doi: 10.1109/TIT.2008.2006394.

[10]

J. Luo, T. Helleseth and A. Kholosha, Two nonbinary sequences with six-valued cross correlation,, in Proc. IWSDA'11, (2011), 44.

[11]

J, Luo, Y. Tang and H. Wang, Exponential sums, cyclic codes and sequences: the odd characteristic Kasami case,, preprint, ().

[12]

G. J. Ness, T. Helleseth and A. Kholosha, On the correlation distribution of the Coulter-Matthews decimation,, IEEE Trans. Inf. Theory, 52 (2006), 2241. doi: 10.1109/TIT.2006.872857.

[13]

E. Y. Seo, Y. S. Kim, J. S. No and D. J. Shin, Cross-correlation distribution of p-ary m-sequence of period $p^{4k}-1$ and its decimated sequences by $(\frac{p^{2k}+1}{2})^{2}$,, IEEE Trans. Inf. Theory, 54 (2008), 3140. doi: 10.1109/TIT.2008.924694.

[14]

Y. Sun, Z. Wang, H. Li and T. Yan, The cross-correlation distribution of a $p$-ary m-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^k+1)^2}{2(p^e+1)}$,, Adv. Math. Commun., 7 (2013), 409. doi: 10.3934/amc.2013.7.409.

[15]

Y. Xia, C. Li, X. Zeng and T. Helleseth, Some results on cross-correlation distribution between a $p$-ary $m$-sequence and its decimated sequences,, IEEE Trans. Inf. Theory, 60 (2014), 7368. doi: 10.1109/TIT.2014.2350775.

show all references

References:
[1]

A. W. Bluher, On $x^{q+1}+ax+b$,, Finite Fields Appl., 10 (2004), 285. doi: 10.1016/j.ffa.2003.08.004.

[2]

W. Chen, J. Luo and Y. Tang, Exponential sums from half quadratic forms and its applications,, in Proc. ISIT'14, (2014), 3145.

[3]

S. T. Choi, J. S. No and H. Chung, On the cross-correlation of a ternary m-sequence of period $3^{4k+2}-1$ and its decimated sequence by $(3^{2k+1}+1)^{2}$ over 8,, in Proc. ISIT'10, (2010), 1268.

[4]

S. T. Choi, J. S. No and H. Chung, On the cross-correlation of a $p$-ary m-sequence of period $p^{2m}-1$ and its decimated sequence by $\frac{(p^m+1)^2}{2(p+1)}$,, IEEE Trans. Inf. Theory, 58 (2012), 1873. doi: 10.1109/TIT.2011.2177573.

[5]

H. Dobbertin, P. Felke and T. Helleseth, Niho type cross correlation functions via Dickson polynomials and Kloosterman sums,, IEEE Trans. Inf. Theory, 52 (2006), 613. doi: 10.1109/TIT.2005.862094.

[6]

T. Helleseth, Some results about the cross-correlation function between two maximal-linear sequence,, Discrete Math., 16 (1976), 209.

[7]

R. Lidl and H. Niederreiter, Finite Fields,, Addison-Wesley, (1983).

[8]

J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes,, IEEE Trans. Inf. Theory, 54 (2008), 5332. doi: 10.1109/TIT.2008.2006424.

[9]

J. Luo and K. Feng, Cyclic codes and sequences from generalized Coulter-Matthews function,, IEEE Trans. Inf. Theory, 54 (2008), 5345. doi: 10.1109/TIT.2008.2006394.

[10]

J. Luo, T. Helleseth and A. Kholosha, Two nonbinary sequences with six-valued cross correlation,, in Proc. IWSDA'11, (2011), 44.

[11]

J, Luo, Y. Tang and H. Wang, Exponential sums, cyclic codes and sequences: the odd characteristic Kasami case,, preprint, ().

[12]

G. J. Ness, T. Helleseth and A. Kholosha, On the correlation distribution of the Coulter-Matthews decimation,, IEEE Trans. Inf. Theory, 52 (2006), 2241. doi: 10.1109/TIT.2006.872857.

[13]

E. Y. Seo, Y. S. Kim, J. S. No and D. J. Shin, Cross-correlation distribution of p-ary m-sequence of period $p^{4k}-1$ and its decimated sequences by $(\frac{p^{2k}+1}{2})^{2}$,, IEEE Trans. Inf. Theory, 54 (2008), 3140. doi: 10.1109/TIT.2008.924694.

[14]

Y. Sun, Z. Wang, H. Li and T. Yan, The cross-correlation distribution of a $p$-ary m-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^k+1)^2}{2(p^e+1)}$,, Adv. Math. Commun., 7 (2013), 409. doi: 10.3934/amc.2013.7.409.

[15]

Y. Xia, C. Li, X. Zeng and T. Helleseth, Some results on cross-correlation distribution between a $p$-ary $m$-sequence and its decimated sequences,, IEEE Trans. Inf. Theory, 60 (2014), 7368. doi: 10.1109/TIT.2014.2350775.

[1]

Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409

[2]

Xiaohui Liu, Jinhua Wang, Dianhua Wu. Two new classes of binary sequence pairs with three-level cross-correlation. Advances in Mathematics of Communications, 2015, 9 (1) : 117-128. doi: 10.3934/amc.2015.9.117

[3]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[4]

Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050

[5]

Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017

[6]

Yanfeng Qi, Chunming Tang, Zhengchun Zhou, Cuiling Fan. Several infinite families of p-ary weakly regular bent functions. Advances in Mathematics of Communications, 2018, 12 (2) : 303-315. doi: 10.3934/amc.2018019

[7]

Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55

[8]

Zilong Wang, Guang Gong. Correlation of binary sequence families derived from the multiplicative characters of finite fields. Advances in Mathematics of Communications, 2013, 7 (4) : 475-484. doi: 10.3934/amc.2013.7.475

[9]

Hua Liang, Wenbing Chen, Jinquan Luo, Yuansheng Tang. A new nonbinary sequence family with low correlation and large size. Advances in Mathematics of Communications, 2017, 11 (4) : 671-691. doi: 10.3934/amc.2017049

[10]

Jacinto Marabel Romo. A closed-form solution for outperformance options with stochastic correlation and stochastic volatility. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1185-1209. doi: 10.3934/jimo.2015.11.1185

[11]

Yuk L. Yung, Cameron Taketa, Ross Cheung, Run-Lie Shia. Infinite sum of the product of exponential and logarithmic functions, its analytic continuation, and application. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 229-248. doi: 10.3934/dcdsb.2010.13.229

[12]

Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9

[13]

Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal low-hit-zone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 67-79. doi: 10.3934/amc.2018004

[14]

Samuel T. Blake, Thomas E. Hall, Andrew Z. Tirkel. Arrays over roots of unity with perfect autocorrelation and good ZCZ cross-correlation. Advances in Mathematics of Communications, 2013, 7 (3) : 231-242. doi: 10.3934/amc.2013.7.231

[15]

Atsushi Yagi. Exponential attractors for competing species model with cross-diffusions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1091-1120. doi: 10.3934/dcds.2008.22.1091

[16]

Libin Mou, Jiongmin Yong. Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method. Journal of Industrial & Management Optimization, 2006, 2 (1) : 95-117. doi: 10.3934/jimo.2006.2.95

[17]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the existence of solutions for the Navier-Stokes system in a sum of weak-$L^{p}$ spaces. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 171-183. doi: 10.3934/dcds.2010.27.171

[18]

Adina Luminiţa Sasu, Bogdan Sasu. Exponential trichotomy and $(r, p)$-admissibility for discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3199-3220. doi: 10.3934/dcdsb.2017170

[19]

Lassi Roininen, Markku S. Lehtinen, Sari Lasanen, Mikko Orispää, Markku Markkanen. Correlation priors. Inverse Problems & Imaging, 2011, 5 (1) : 167-184. doi: 10.3934/ipi.2011.5.167

[20]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (1)

[Back to Top]