-
Previous Article
On skew polynomial codes and lattices from quotients of cyclic division algebras
- AMC Home
- This Issue
-
Next Article
Yet another variation on minimal linear codes
Probability estimates for reachability of linear systems defined over finite fields
1. | Institut für Mathematik; Lehrstuhl für Mathematik II, Universität Würzburg, Am Hubland, 97074 Würzburg, |
2. | Institute of Mathematics, University of Würzburg, 97074 Würzburg, Germany, Germany |
References:
[1] |
J.-J. Climent, V. Herranz and C. Perea, A first approximation of concatenated convolutional codes from linear systems theory viewpoint,, Linear Alg. Appl., 425 (2007), 673.
doi: 10.1016/j.laa.2007.03.017. |
[2] |
P. A. Fuhrmann, On controllability and observability of systems connected in parallel,, IEEE Trans. Circ. Syst., 22 (1975). Google Scholar |
[3] |
P. A. Fuhrmann and U. Helmke, The Mathematics of Networks of Linear Systems,, Springer, (2015).
doi: 10.1007/978-3-319-16646-9. |
[4] |
M. Garcia-Armas, S. R. Ghorpade and S. Ram, Relatively prime polynomials and nonsingular Hankel matrices over finite fields,, J. Combin. Theory Ser. A, 118 (2011), 819.
doi: 10.1016/j.jcta.2010.11.005. |
[5] |
U. Helmke, Topology of the moduli space for reachable linear dynamical systems: The complex case,, Math. Syst. Theory, 19 (1986), 155.
doi: 10.1007/BF01704912. |
[6] |
U. Helmke, The cohomology of moduli spaces for linear dynamical systems,, Regensburger Math. Schriften, 24 (1993).
|
[7] |
T. Ho and D. S. Lun, Network Coding: An Introduction,, Cambridge Univ. Press, (2008).
doi: 10.1017/CBO9780511754623. |
[8] |
S. Höst, Woven convolutional codes I: Encoder properties,, IEEE Trans. Inf. Theory, 48 (2002), 149.
doi: 10.1109/18.971745. |
[9] |
A. S. Jarrah, R. Laubenbacher, B. Stigler and M. Stillman, Reverse-engineering of polynomial dynamical systems,, Adv. Appl. Math., 39 (2007), 477.
doi: 10.1016/j.aam.2006.08.004. |
[10] |
M. Kociecky and K. M. Przyluski, On the number of controllable linear systems over a finite field,, Linear Alg. Appl., 122-124 (1989), 122.
doi: 10.1016/0024-3795(89)90649-6. |
[11] |
J. Milnor and J. Stasheff, Characteristic Classes,, Princeton Univ. Press, (1974).
|
[12] |
J. A. De Reyna and R. Heyman, Counting tuples restricted by coprimality conditions,, preprint, (). Google Scholar |
[13] |
J. Rosenthal, J. M. Schumacher and E. V. York, On behaviours and convolutional codes,, IEEE Trans. Inf. Theory, 42 (1996), 1881.
doi: 10.1109/18.556682. |
[14] |
J. Rosenthal and E. V. York, BCH Convolutional Codes,, IEEE Trans. Inf. Theory, 45 (1999), 1833.
doi: 10.1109/18.782104. |
[15] |
S. Sundaram and C. Hadjicostis, Structural controllability and observability of linear systems over finite fields with applications to mult-agent systems,, IEEE Trans. Autom. Control, 58 (2013), 60.
doi: 10.1109/TAC.2012.2204155. |
show all references
References:
[1] |
J.-J. Climent, V. Herranz and C. Perea, A first approximation of concatenated convolutional codes from linear systems theory viewpoint,, Linear Alg. Appl., 425 (2007), 673.
doi: 10.1016/j.laa.2007.03.017. |
[2] |
P. A. Fuhrmann, On controllability and observability of systems connected in parallel,, IEEE Trans. Circ. Syst., 22 (1975). Google Scholar |
[3] |
P. A. Fuhrmann and U. Helmke, The Mathematics of Networks of Linear Systems,, Springer, (2015).
doi: 10.1007/978-3-319-16646-9. |
[4] |
M. Garcia-Armas, S. R. Ghorpade and S. Ram, Relatively prime polynomials and nonsingular Hankel matrices over finite fields,, J. Combin. Theory Ser. A, 118 (2011), 819.
doi: 10.1016/j.jcta.2010.11.005. |
[5] |
U. Helmke, Topology of the moduli space for reachable linear dynamical systems: The complex case,, Math. Syst. Theory, 19 (1986), 155.
doi: 10.1007/BF01704912. |
[6] |
U. Helmke, The cohomology of moduli spaces for linear dynamical systems,, Regensburger Math. Schriften, 24 (1993).
|
[7] |
T. Ho and D. S. Lun, Network Coding: An Introduction,, Cambridge Univ. Press, (2008).
doi: 10.1017/CBO9780511754623. |
[8] |
S. Höst, Woven convolutional codes I: Encoder properties,, IEEE Trans. Inf. Theory, 48 (2002), 149.
doi: 10.1109/18.971745. |
[9] |
A. S. Jarrah, R. Laubenbacher, B. Stigler and M. Stillman, Reverse-engineering of polynomial dynamical systems,, Adv. Appl. Math., 39 (2007), 477.
doi: 10.1016/j.aam.2006.08.004. |
[10] |
M. Kociecky and K. M. Przyluski, On the number of controllable linear systems over a finite field,, Linear Alg. Appl., 122-124 (1989), 122.
doi: 10.1016/0024-3795(89)90649-6. |
[11] |
J. Milnor and J. Stasheff, Characteristic Classes,, Princeton Univ. Press, (1974).
|
[12] |
J. A. De Reyna and R. Heyman, Counting tuples restricted by coprimality conditions,, preprint, (). Google Scholar |
[13] |
J. Rosenthal, J. M. Schumacher and E. V. York, On behaviours and convolutional codes,, IEEE Trans. Inf. Theory, 42 (1996), 1881.
doi: 10.1109/18.556682. |
[14] |
J. Rosenthal and E. V. York, BCH Convolutional Codes,, IEEE Trans. Inf. Theory, 45 (1999), 1833.
doi: 10.1109/18.782104. |
[15] |
S. Sundaram and C. Hadjicostis, Structural controllability and observability of linear systems over finite fields with applications to mult-agent systems,, IEEE Trans. Autom. Control, 58 (2013), 60.
doi: 10.1109/TAC.2012.2204155. |
[1] |
Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045 |
[2] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[3] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[4] |
Roderick S. C. Wong, H. Y. Zhang. On the connection formulas of the third Painlevé transcendent. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 541-560. doi: 10.3934/dcds.2009.23.541 |
[5] |
Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029 |
[6] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[7] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[8] |
Min Ji, Xinna Ye, Fangyao Qian, T.C.E. Cheng, Yiwei Jiang. Parallel-machine scheduling in shared manufacturing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020174 |
[9] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[10] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[11] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[12] |
Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020031 |
[13] |
Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011 |
[14] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[15] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020453 |
[16] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
[17] |
Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020409 |
[18] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[19] |
Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021020 |
[20] |
Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021 doi: 10.3934/jgm.2021002 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]