2016, 10(3): 475-488. doi: 10.3934/amc.2016019

A new family of linear maximum rank distance codes

1. 

School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

Received  April 2015 Revised  June 2016 Published  August 2016

In this article we construct a new family of linear maximum rank distance (MRD) codes for all parameters. This family contains the only known family for general parameters, the Gabidulin codes, and contains codes inequivalent to the Gabidulin codes. This family also contains the well-known family of semifields known as Generalised Twisted Fields. We also calculate the automorphism group of these codes, including the automorphism group of the Gabidulin codes.
Citation: John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019
References:
[1]

J. Ai, T. Honold and H. Liu, The expurgation-augmentation method for constructing good plane subspace codes,, preprint, ().

[2]

A. A. Albert, Generalized twisted fields,, Pacific J. Math., 11 (1961), 1.

[3]

D. Augot, P. Loidreau and G. Robert, Rank metric and Gabidulin codes in characteristic zero,, in Proc. ISIT 2013, (2013), 509.

[4]

S. Ball, G. Ebert and M. Lavrauw, A geometric construction of finite semifields,, J. Algebra, 311 (2007), 117. doi: 10.1016/j.jalgebra.2006.11.044.

[5]

T. Berger, Isometries for rank distance and permutation group of Gabidulin codes,, IEEE Trans. Inform. Theory, 49 (2003), 3016. doi: 10.1109/TIT.2003.819322.

[6]

M. Biliotti, V. Jha and N. L. Johnson, The collineation groups of generalized twisted field planes,, Geom. Dedicata, 76 (1999), 97. doi: 10.1023/A:1005089016092.

[7]

A. Blokhuis and M. Lavrauw, Scattered spaces with respect to a spread in $\PG(n,q)$,, Geom. Dedicata, 81 (2000), 231. doi: 10.1023/A:1005283806897.

[8]

A. Cossidente, G. Marino and F. Pavese, Non-linear maximum rank distance codes,, preprint., (). doi: 10.1007/s10623-015-0108-0.

[9]

J. de la Cruz, M. Kiermaier, A. Wassermann and W. Willems, Algebraic structures of MRD Codes,, Adv. Math. Commun., 10 (2016), 499. doi: 10.3934/amc.2016021.

[10]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory,, J. Combin. Theory Ser. A, 25 (1978), 226. doi: 10.1016/0097-3165(78)90015-8.

[11]

P. Dembowski, Finite Geometries,, Springer, (1968).

[12]

U. Dempwolff, Translation Planes of Small Order,, , ().

[13]

J.-G. Dumas, R. Gow, G. McGuire and J. Sheekey, Subspaces of matrices with special rank properties,, Linear Algebra Appl., 433 (2010), 191. doi: 10.1016/j.laa.2010.02.015.

[14]

E. M. Gabidulin, Theory of codes with maximum rank distance,, Probl. Inf. Transm., 21 (1985), 1.

[15]

E. Gabidulin and A. Kshevetskiy, The new construction of rank codes,, in Proc. ISIT 2005., (2005).

[16]

E. M. Gabidulin and N. I. Pilipchuk, Symmetric rank codes,, Probl. Inf. Transm., 40 (2004), 103. doi: 10.1023/B:PRIT.0000043925.67309.c6.

[17]

M. Gadouleau and Z. Yan, Constant-rank codes and their connection to constant-dimension codes,, IEEE Trans. Inform. Theory, 56 (2010), 3207. doi: 10.1109/TIT.2010.2048447.

[18]

R. Gow, M. Lavrauw, J. Sheekey and F. Vanhove, Constant rank-distance sets of hermitian matrices and partial spreads in hermitian polar spaces,, Elect. J. Comb., 21 (2014).

[19]

R. Gow and R. Quinlan, Galois theory and linear algebra,, Linear Algebra Appl., 430 (2009), 1778. doi: 10.1016/j.laa.2008.06.030.

[20]

R. Gow and R. Quinlan, Galois extensions and subspaces of alternating bilinear forms with special rank properties,, Linear Algebra Appl., 430 (2009), 2212. doi: 10.1016/j.laa.2008.11.021.

[21]

T. Honold, M. Kiermaier and S. Kurz, Optimal binary subspace codes of length $6$, constant dimension $3$ and minimum subspace distance $4$,, in Topics in Finite Fields, (2015), 157. doi: 10.1090/conm/632/12627.

[22]

W. M. Kantor, Finite semifields,, in Finite Geometries, (2006), 103.

[23]

R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding,, IEEE Trans. Inform. Theory, 54 (2008), 3579. doi: 10.1109/TIT.2008.926449.

[24]

M. Lavrauw, Scattered spaces in Galois geometry,, preprint, ().

[25]

M. Lavrauw and O. Polverino, Finite semifields,, in Current Research Topics in Galois Geometry (eds. J. De Beule and L. Storme), (2011).

[26]

M. Lavrauw, J. Sheekey and C. Zanella, On embeddings of minimum dimension of $\PG(n,q)\times \PG(n,q)$,, Des. Codes Cryptogr., 74 (2015), 427. doi: 10.1007/s10623-013-9866-8.

[27]

H. Liu and T. Honold, A new approach to the main problem of subspace coding,, preprint, ().

[28]

G. Lunardon, G. Marino, O. Polverino and R. Trombetti, Translation dual of a semifield,, J. Combin. Theory Ser. A, 115 (2008), 1321. doi: 10.1016/j.jcta.2008.02.002.

[29]

G. Lunardon and O. Polverino, Blocking sets and derivable partial spreads,, J. Algebr. Comb., 14 (2001), 49. doi: 10.1023/A:1011265919847.

[30]

G. Lunardon, R. Trombetti and Y. Zhou, Generalized twisted Gabidulin codes,, preprint, ().

[31]

K. Marshall and A-L. Trautmann, Characterizations of MRD and Gabidulin codes,, in ALCOMA15, ().

[32]

G. Menichetti, On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field,, J. Algebra, 47 (1977), 400.

[33]

K. Morrison, Equivalence for rank-metric and matrix codes and automorphism groups of Gabidulin codes,, IEEE Trans. Inform. Theory, 60 (2014), 7035. doi: 10.1109/TIT.2014.2359198.

[34]

O. Ore, On a special class of polynomials,, Trans. Amer. Math. Soc., 35 (1933), 559. doi: 10.2307/1989849.

[35]

K. Otal and F. Özbudak, Some non-Gabidulin MRD codes,, in ALCOMA15., ().

[36]

A. Ravagnani, Rank-metric codes and their MacWilliams identities,, preprint, ().

[37]

I. F. Rúa, E. F. Combarro and J. Ranilla, Determination of division algebras with 243 elements,, Finite Fields Appl., 18 (2012), 1148.

[38]

K.-U. Schmidt, Symmetric bilinear forms over finite fields with applications to coding theory,, preprint, (). doi: 10.1007/s10801-015-0595-0.

[39]

D. Silva, F. R. Kschischang and R. Koetter, A rank-metric approach to error control in random network coding,, IEEE Trans. Inform. Theory, 54 (2008), 3951. doi: 10.1109/TIT.2008.928291.

[40]

Z. X. Wan, Geometry of Matrices,, World Scientific, (1996). doi: 10.1142/9789812830234.

show all references

References:
[1]

J. Ai, T. Honold and H. Liu, The expurgation-augmentation method for constructing good plane subspace codes,, preprint, ().

[2]

A. A. Albert, Generalized twisted fields,, Pacific J. Math., 11 (1961), 1.

[3]

D. Augot, P. Loidreau and G. Robert, Rank metric and Gabidulin codes in characteristic zero,, in Proc. ISIT 2013, (2013), 509.

[4]

S. Ball, G. Ebert and M. Lavrauw, A geometric construction of finite semifields,, J. Algebra, 311 (2007), 117. doi: 10.1016/j.jalgebra.2006.11.044.

[5]

T. Berger, Isometries for rank distance and permutation group of Gabidulin codes,, IEEE Trans. Inform. Theory, 49 (2003), 3016. doi: 10.1109/TIT.2003.819322.

[6]

M. Biliotti, V. Jha and N. L. Johnson, The collineation groups of generalized twisted field planes,, Geom. Dedicata, 76 (1999), 97. doi: 10.1023/A:1005089016092.

[7]

A. Blokhuis and M. Lavrauw, Scattered spaces with respect to a spread in $\PG(n,q)$,, Geom. Dedicata, 81 (2000), 231. doi: 10.1023/A:1005283806897.

[8]

A. Cossidente, G. Marino and F. Pavese, Non-linear maximum rank distance codes,, preprint., (). doi: 10.1007/s10623-015-0108-0.

[9]

J. de la Cruz, M. Kiermaier, A. Wassermann and W. Willems, Algebraic structures of MRD Codes,, Adv. Math. Commun., 10 (2016), 499. doi: 10.3934/amc.2016021.

[10]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory,, J. Combin. Theory Ser. A, 25 (1978), 226. doi: 10.1016/0097-3165(78)90015-8.

[11]

P. Dembowski, Finite Geometries,, Springer, (1968).

[12]

U. Dempwolff, Translation Planes of Small Order,, , ().

[13]

J.-G. Dumas, R. Gow, G. McGuire and J. Sheekey, Subspaces of matrices with special rank properties,, Linear Algebra Appl., 433 (2010), 191. doi: 10.1016/j.laa.2010.02.015.

[14]

E. M. Gabidulin, Theory of codes with maximum rank distance,, Probl. Inf. Transm., 21 (1985), 1.

[15]

E. Gabidulin and A. Kshevetskiy, The new construction of rank codes,, in Proc. ISIT 2005., (2005).

[16]

E. M. Gabidulin and N. I. Pilipchuk, Symmetric rank codes,, Probl. Inf. Transm., 40 (2004), 103. doi: 10.1023/B:PRIT.0000043925.67309.c6.

[17]

M. Gadouleau and Z. Yan, Constant-rank codes and their connection to constant-dimension codes,, IEEE Trans. Inform. Theory, 56 (2010), 3207. doi: 10.1109/TIT.2010.2048447.

[18]

R. Gow, M. Lavrauw, J. Sheekey and F. Vanhove, Constant rank-distance sets of hermitian matrices and partial spreads in hermitian polar spaces,, Elect. J. Comb., 21 (2014).

[19]

R. Gow and R. Quinlan, Galois theory and linear algebra,, Linear Algebra Appl., 430 (2009), 1778. doi: 10.1016/j.laa.2008.06.030.

[20]

R. Gow and R. Quinlan, Galois extensions and subspaces of alternating bilinear forms with special rank properties,, Linear Algebra Appl., 430 (2009), 2212. doi: 10.1016/j.laa.2008.11.021.

[21]

T. Honold, M. Kiermaier and S. Kurz, Optimal binary subspace codes of length $6$, constant dimension $3$ and minimum subspace distance $4$,, in Topics in Finite Fields, (2015), 157. doi: 10.1090/conm/632/12627.

[22]

W. M. Kantor, Finite semifields,, in Finite Geometries, (2006), 103.

[23]

R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding,, IEEE Trans. Inform. Theory, 54 (2008), 3579. doi: 10.1109/TIT.2008.926449.

[24]

M. Lavrauw, Scattered spaces in Galois geometry,, preprint, ().

[25]

M. Lavrauw and O. Polverino, Finite semifields,, in Current Research Topics in Galois Geometry (eds. J. De Beule and L. Storme), (2011).

[26]

M. Lavrauw, J. Sheekey and C. Zanella, On embeddings of minimum dimension of $\PG(n,q)\times \PG(n,q)$,, Des. Codes Cryptogr., 74 (2015), 427. doi: 10.1007/s10623-013-9866-8.

[27]

H. Liu and T. Honold, A new approach to the main problem of subspace coding,, preprint, ().

[28]

G. Lunardon, G. Marino, O. Polverino and R. Trombetti, Translation dual of a semifield,, J. Combin. Theory Ser. A, 115 (2008), 1321. doi: 10.1016/j.jcta.2008.02.002.

[29]

G. Lunardon and O. Polverino, Blocking sets and derivable partial spreads,, J. Algebr. Comb., 14 (2001), 49. doi: 10.1023/A:1011265919847.

[30]

G. Lunardon, R. Trombetti and Y. Zhou, Generalized twisted Gabidulin codes,, preprint, ().

[31]

K. Marshall and A-L. Trautmann, Characterizations of MRD and Gabidulin codes,, in ALCOMA15, ().

[32]

G. Menichetti, On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field,, J. Algebra, 47 (1977), 400.

[33]

K. Morrison, Equivalence for rank-metric and matrix codes and automorphism groups of Gabidulin codes,, IEEE Trans. Inform. Theory, 60 (2014), 7035. doi: 10.1109/TIT.2014.2359198.

[34]

O. Ore, On a special class of polynomials,, Trans. Amer. Math. Soc., 35 (1933), 559. doi: 10.2307/1989849.

[35]

K. Otal and F. Özbudak, Some non-Gabidulin MRD codes,, in ALCOMA15., ().

[36]

A. Ravagnani, Rank-metric codes and their MacWilliams identities,, preprint, ().

[37]

I. F. Rúa, E. F. Combarro and J. Ranilla, Determination of division algebras with 243 elements,, Finite Fields Appl., 18 (2012), 1148.

[38]

K.-U. Schmidt, Symmetric bilinear forms over finite fields with applications to coding theory,, preprint, (). doi: 10.1007/s10801-015-0595-0.

[39]

D. Silva, F. R. Kschischang and R. Koetter, A rank-metric approach to error control in random network coding,, IEEE Trans. Inform. Theory, 54 (2008), 3951. doi: 10.1109/TIT.2008.928291.

[40]

Z. X. Wan, Geometry of Matrices,, World Scientific, (1996). doi: 10.1142/9789812830234.

[1]

Anna-Lena Horlemann-Trautmann, Kyle Marshall. New criteria for MRD and Gabidulin codes and some Rank-Metric code constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 533-548. doi: 10.3934/amc.2017042

[2]

Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018

[3]

Olof Heden, Denis S. Krotov. On the structure of non-full-rank perfect $q$-ary codes. Advances in Mathematics of Communications, 2011, 5 (2) : 149-156. doi: 10.3934/amc.2011.5.149

[4]

Susanne Pumplün. Finite nonassociative algebras obtained from skew polynomials and possible applications to (f, σ, δ)-codes. Advances in Mathematics of Communications, 2017, 11 (3) : 615-634. doi: 10.3934/amc.2017046

[5]

Kamil Otal, Ferruh Özbudak. Explicit constructions of some non-Gabidulin linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 589-600. doi: 10.3934/amc.2016028

[6]

Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the symmetry group of extended perfect binary codes of length $n+1$ and rank $n-\log(n+1)+2$. Advances in Mathematics of Communications, 2012, 6 (2) : 121-130. doi: 10.3934/amc.2012.6.121

[7]

Michael Boshernitzan, Máté Wierdl. Almost-everywhere convergence and polynomials. Journal of Modern Dynamics, 2008, 2 (3) : 465-470. doi: 10.3934/jmd.2008.2.465

[8]

Elisavet Konstantinou, Aristides Kontogeorgis. Some remarks on the construction of class polynomials. Advances in Mathematics of Communications, 2011, 5 (1) : 109-118. doi: 10.3934/amc.2011.5.109

[9]

Nathaniel D. Emerson. Dynamics of polynomials with disconnected Julia sets. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 801-834. doi: 10.3934/dcds.2003.9.801

[10]

Jayadev S. Athreya, Gregory A. Margulis. Values of random polynomials at integer points. Journal of Modern Dynamics, 2018, 12: 9-16. doi: 10.3934/jmd.2018002

[11]

Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741

[12]

Relinde Jurrius, Ruud Pellikaan. On defining generalized rank weights. Advances in Mathematics of Communications, 2017, 11 (1) : 225-235. doi: 10.3934/amc.2017014

[13]

Anton Petrunin. Metric minimizing surfaces. Electronic Research Announcements, 1999, 5: 47-54.

[14]

Valentin Afraimovich, Lev Glebsky, Rosendo Vazquez. Measures related to metric complexity. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1299-1309. doi: 10.3934/dcds.2010.28.1299

[15]

Vincenzo Recupero. Hysteresis operators in metric spaces. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 773-792. doi: 10.3934/dcdss.2015.8.773

[16]

Vladimir Georgiev, Eugene Stepanov. Metric cycles, curves and solenoids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1443-1463. doi: 10.3934/dcds.2014.34.1443

[17]

Nur Fadhilah Ibrahim. An algorithm for the largest eigenvalue of nonhomogeneous nonnegative polynomials. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 75-91. doi: 10.3934/naco.2014.4.75

[18]

Anca Radulescu. The connected Isentropes conjecture in a space of quartic polynomials. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 139-175. doi: 10.3934/dcds.2007.19.139

[19]

Jean-François Biasse, Michael J. Jacobson, Jr.. Smoothness testing of polynomials over finite fields. Advances in Mathematics of Communications, 2014, 8 (4) : 459-477. doi: 10.3934/amc.2014.8.459

[20]

Ricardo García López. A note on L-series and Hodge spectrum of polynomials. Electronic Research Announcements, 2009, 16: 56-62. doi: 10.3934/era.2009.16.56

2016 Impact Factor: 0.8

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]