Citation: |
[1] |
J. Alexander, R. Balasubramanian, J. Martin, K. Monahan, H. Pollatsek and A. Sen, Ruling out $(160,54,18)$ difference sets in some nonabelian groups, J. Combin. Des., 8 (2000), 221-231.doi: 10.1002/1520-6610(2000)8:4<221::AID-JCD1>3.3.CO;2-Y. |
[2] |
T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge Univ. Press, 1999. |
[3] |
W. Bosma, J. J. Cannon, C. Fieker and A. Steel, Handbook of Magma Functions, edition 2.16, 2010. |
[4] |
P. J. Cameron and C. E. Praeger, Block-transitive t-designs I: point-imprimitive designs, Discrete Math., 118 (1993), 33-43.doi: 10.1016/0012-365X(93)90051-T. |
[5] |
J. A. Davis and J. Jedwab, A survey of Hadamard difference sets, in Groups, Difference Sets and the Monster (eds. K.T. Arasu et al.), de Gruyter, Berlin-New York, 1996, 145-156. |
[6] |
J. F. Dillon, Variations on a scheme of McFarland for noncyclic difference sets, J. Combin. Theory Ser. A, 40 (1985), 9-21.doi: 10.1016/0097-3165(85)90043-3. |
[7] |
J. F. Dillon, Some REALLY beautiful Hadamard matrices, Crypt. Commun., {2} (2010), 271-292.doi: 10.1007/s12095-010-0031-1. |
[8] |
The GAP Group, GAP - Groups, Algorithms, and Programming, version 4.4, available online at http://www.gap-system.org |
[9] |
A. Golemac and T. Vučičić, New difference sets in nonabelian groups of order $100$, J. Combin. Des., 9 (2001), 424-434.doi: 10.1002/jcd.1021. |
[10] |
E. H. Moore and H. S. Pollatsek, Difference Sets: Connecting Algebra, Combinatorics and Geometry, AMS, Providence, 2013.doi: 10.1090/stml/067. |
[11] |
K. W. Smith, Nonabelian Hadamard difference sets, J. Combin. Theory Ser. A, 70 (1995), 144-156.doi: 10.1016/0097-3165(95)90084-5. |
[12] |
T. Vučičić, New symmetric designs and nonabelian difference sets with parameters $(100, 45, 20)$, J. Combin. Des., 8 (2000), 291-299.doi: 10.1002/1520-6610(2000)8:4<291::AID-JCD6>3.0.CO;2-L. |
[13] |
, href ="http://www.pmfst.unist.hr/~vucicic/" target="_blank">http://www.pmfst.unist.hr/~vucicic/ |