August  2016, 10(3): 601-611. doi: 10.3934/amc.2016029

The non-existence of $(104,22;3,5)$-arcs

1. 

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl. 8, Sofia 1113

2. 

Faculty of Mathematics and Informatics, Sofia University, 5, James Bourchier blvd., 1164 Sofia, Bulgaria

Received  May 2015 Revised  September 2015 Published  August 2016

Using some recent results about multiple extendability of arcs and codes, we prove the nonexistence of $(104,22)$-arcs in $PG(3,5)$. This implies the non-existence of Griesmer $[104,4,82]_5$-codes and settles one of the four remaining open cases for the main problem of coding theory for $q=5,k=4,d=82$.
Citation: Ivan Landjev, Assia Rousseva. The non-existence of $(104,22;3,5)$-arcs. Advances in Mathematics of Communications, 2016, 10 (3) : 601-611. doi: 10.3934/amc.2016029
References:
[1]

S. Ball, On intersection sets in Desarguesian affine spaces,, European J. Combin., 21 (2000), 441. doi: 10.1006/eujc.2000.0350. Google Scholar

[2]

I. Boukliev, Optimal Linear Codes - Constructions and Bounds,, Ph.D thesis, (1996). Google Scholar

[3]

S. Dodunekov and J. Simonis, Codes and projective multisets,, Electr. J. Combin., 5 (1998). Google Scholar

[4]

Y. Edel and I. Landjev, On multiple caps in finite projective spaces,, Des. Codes Cryptogr., 56 (2010), 163. doi: 10.1007/s10623-010-9398-4. Google Scholar

[5]

J. H. Griesmer, A bound for error-correcting codes,, IBM J. Res. Develop., 4 (1960), 532. Google Scholar

[6]

R. Hill, Optimal linear codes,, in Cryptography and Coding (ed. C. Mitchell), (1992), 75. Google Scholar

[7]

R. Hill and E. Kolev, A survey of recent results on optimal linear codes,, in Combinatorial Designs and their Application (eds. F.C. Holroyd, (1999), 127. Google Scholar

[8]

I. Landjev, The geometry of $(n,3)$-arcs in the projective plane of order 5,, in Proc. 6th Workshop ACCT, (1996), 170. Google Scholar

[9]

I. Landjev and A. Rousseva, On the Extendability of Griesmer Arcs,, Ann. Sof. Univ. Fac. Math. Inf., 101 (2013), 183. Google Scholar

[10]

I. Landjev, A. Rousseva and L. Storme, On the extendability of quasidivisible Griesmer arcs,, Des. Codes Cryptogr., 79 (2016), 535. doi: 10.1007/s10623-015-0114-2. Google Scholar

[11]

I. Landjev and L. Storme, Linear codes and Galois geometries,, in Current Research Topics in Galois Geometries (eds. L. Storme and J. De Beule), (2012), 187. Google Scholar

[12]

T. Maruta, A new extension theorem for linear codes,, Finite Fields Appl., 10 (2004), 674. doi: 10.1016/j.ffa.2004.02.001. Google Scholar

[13]

T. Maruta, http://www.mi.s.oskafu-u.ac.jp/~maruta/griesmer.htm, , (). Google Scholar

[14]

A. Rousseva, On the structure of $(t$ mod $q)$-arcs in finite projective geometries,, Annuaire de l' Univ. de Sofia, 102 (2015). Google Scholar

[15]

G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes,, Inform. Control, 8 (1965), 170. Google Scholar

show all references

References:
[1]

S. Ball, On intersection sets in Desarguesian affine spaces,, European J. Combin., 21 (2000), 441. doi: 10.1006/eujc.2000.0350. Google Scholar

[2]

I. Boukliev, Optimal Linear Codes - Constructions and Bounds,, Ph.D thesis, (1996). Google Scholar

[3]

S. Dodunekov and J. Simonis, Codes and projective multisets,, Electr. J. Combin., 5 (1998). Google Scholar

[4]

Y. Edel and I. Landjev, On multiple caps in finite projective spaces,, Des. Codes Cryptogr., 56 (2010), 163. doi: 10.1007/s10623-010-9398-4. Google Scholar

[5]

J. H. Griesmer, A bound for error-correcting codes,, IBM J. Res. Develop., 4 (1960), 532. Google Scholar

[6]

R. Hill, Optimal linear codes,, in Cryptography and Coding (ed. C. Mitchell), (1992), 75. Google Scholar

[7]

R. Hill and E. Kolev, A survey of recent results on optimal linear codes,, in Combinatorial Designs and their Application (eds. F.C. Holroyd, (1999), 127. Google Scholar

[8]

I. Landjev, The geometry of $(n,3)$-arcs in the projective plane of order 5,, in Proc. 6th Workshop ACCT, (1996), 170. Google Scholar

[9]

I. Landjev and A. Rousseva, On the Extendability of Griesmer Arcs,, Ann. Sof. Univ. Fac. Math. Inf., 101 (2013), 183. Google Scholar

[10]

I. Landjev, A. Rousseva and L. Storme, On the extendability of quasidivisible Griesmer arcs,, Des. Codes Cryptogr., 79 (2016), 535. doi: 10.1007/s10623-015-0114-2. Google Scholar

[11]

I. Landjev and L. Storme, Linear codes and Galois geometries,, in Current Research Topics in Galois Geometries (eds. L. Storme and J. De Beule), (2012), 187. Google Scholar

[12]

T. Maruta, A new extension theorem for linear codes,, Finite Fields Appl., 10 (2004), 674. doi: 10.1016/j.ffa.2004.02.001. Google Scholar

[13]

T. Maruta, http://www.mi.s.oskafu-u.ac.jp/~maruta/griesmer.htm, , (). Google Scholar

[14]

A. Rousseva, On the structure of $(t$ mod $q)$-arcs in finite projective geometries,, Annuaire de l' Univ. de Sofia, 102 (2015). Google Scholar

[15]

G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes,, Inform. Control, 8 (1965), 170. Google Scholar

[1]

J. De Beule, K. Metsch, L. Storme. Characterization results on weighted minihypers and on linear codes meeting the Griesmer bound. Advances in Mathematics of Communications, 2008, 2 (3) : 261-272. doi: 10.3934/amc.2008.2.261

[2]

Ivan Landjev, Assia Rousseva. Characterization of some optimal arcs. Advances in Mathematics of Communications, 2011, 5 (2) : 317-331. doi: 10.3934/amc.2011.5.317

[3]

Thomas Honold, Ivan Landjev. The dual construction for arcs in projective Hjelmslev spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 11-21. doi: 10.3934/amc.2011.5.11

[4]

Michael Kiermaier, Matthias Koch, Sascha Kurz. $2$-arcs of maximal size in the affine and the projective Hjelmslev plane over $\mathbb Z$25. Advances in Mathematics of Communications, 2011, 5 (2) : 287-301. doi: 10.3934/amc.2011.5.287

[5]

Hayden Schaeffer. Active arcs and contours. Inverse Problems & Imaging, 2014, 8 (3) : 845-863. doi: 10.3934/ipi.2014.8.845

[6]

Peter Vandendriessche. LDPC codes associated with linear representations of geometries. Advances in Mathematics of Communications, 2010, 4 (3) : 405-417. doi: 10.3934/amc.2010.4.405

[7]

Srimanta Bhattacharya, Sushmita Ruj, Bimal Roy. Combinatorial batch codes: A lower bound and optimal constructions. Advances in Mathematics of Communications, 2012, 6 (2) : 165-174. doi: 10.3934/amc.2012.6.165

[8]

Anton Betten, Eun Ju Cheon, Seon Jeong Kim, Tatsuya Maruta. The classification of $(42,6)_8$ arcs. Advances in Mathematics of Communications, 2011, 5 (2) : 209-223. doi: 10.3934/amc.2011.5.209

[9]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[10]

Jiamin Zhu, Emmanuel Trélat, Max Cerf. Planar tilting maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1347-1388. doi: 10.3934/dcdsb.2016.21.1347

[11]

Ayako Kikui, Tatsuya Maruta, Yuri Yoshida. On the uniqueness of (48,6)-arcs in PG(2,9). Advances in Mathematics of Communications, 2009, 3 (1) : 29-34. doi: 10.3934/amc.2009.3.29

[12]

Francisco R. Ruiz del Portal. Stable sets of planar homeomorphisms with translation pseudo-arcs. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 2379-2390. doi: 10.3934/dcdss.2019149

[13]

Tatsuya Maruta, Yusuke Oya. On optimal ternary linear codes of dimension 6. Advances in Mathematics of Communications, 2011, 5 (3) : 505-520. doi: 10.3934/amc.2011.5.505

[14]

Daniele Bartoli, Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. A 3-cycle construction of complete arcs sharing $(q+3)/2$ points with a conic. Advances in Mathematics of Communications, 2013, 7 (3) : 319-334. doi: 10.3934/amc.2013.7.319

[15]

Sabyasachi Mukherjee. Parabolic arcs of the multicorns: Real-analyticity of Hausdorff dimension, and singularities of $\mathrm{Per}_n(1)$ curves. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2565-2588. doi: 10.3934/dcds.2017110

[16]

Jesús Carrillo-Pacheco, Felipe Zaldivar. On codes over FFN$(1,q)$-projective varieties. Advances in Mathematics of Communications, 2016, 10 (2) : 209-220. doi: 10.3934/amc.2016001

[17]

Christine Bachoc, Alberto Passuello, Frank Vallentin. Bounds for projective codes from semidefinite programming. Advances in Mathematics of Communications, 2013, 7 (2) : 127-145. doi: 10.3934/amc.2013.7.127

[18]

Roland D. Barrolleta, Emilio Suárez-Canedo, Leo Storme, Peter Vandendriessche. On primitive constant dimension codes and a geometrical sunflower bound. Advances in Mathematics of Communications, 2017, 11 (4) : 757-765. doi: 10.3934/amc.2017055

[19]

Jop Briët, Assaf Naor, Oded Regev. Locally decodable codes and the failure of cotype for projective tensor products. Electronic Research Announcements, 2012, 19: 120-130. doi: 10.3934/era.2012.19.120

[20]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Advances in Mathematics of Communications, 2010, 4 (1) : 69-81. doi: 10.3934/amc.2010.4.69

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]