2016, 10(4): 847-850. doi: 10.3934/amc.2016044

Some new two-weight ternary and quinary codes of lengths six and twelve

1. 

University of Central Oklahoma, 100 North University Drive, P.O. Box 129, Edmond, OK 73034, United States

2. 

Colorado State University, 841 Oval Drive, P.O. Box 1874, Fort Collins, CO 80523-1874, United States

Received  February 2015 Published  November 2016

Let $[n,k]_q$ be a projective two-weight linear code over ${\rm GF}(q)^n$. In this correspondence, 9 codes are constructed in which $k=3$.
Citation: Liz Lane-Harvard, Tim Penttila. Some new two-weight ternary and quinary codes of lengths six and twelve. Advances in Mathematics of Communications, 2016, 10 (4) : 847-850. doi: 10.3934/amc.2016044
References:
[1]

A. S. Barlotti, $\{ k;n\}$-archi di un piano lineare finite,, Boll. Un. Mat. Ital., 11 (1956), 553.

[2]

L. M. Batten and J. M. Dover, Some sets of type $(m,n)$ in cubic order planes,, Des. Codes Cryptogr., 16 (1999), 211. doi: 10.1023/A:1008397209409.

[3]

A. Blokhuis and M. Lavrauw, Scattered spaces with respect to a spread in $PG(n,q)$,, Geom. Dedicata, 81 (2000), 231. doi: 10.1023/A:1005283806897.

[4]

R. C. Bose, Mathematical theory of the symmetrical factorial design,, Sankhyā Indian J. Stat., 8 (1947), 107.

[5]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I. The user language,, J. Symb. Comput., 24 (1997), 235. doi: 10.1006/jsco.1996.0125.

[6]

R. Calderbank and W. M. Kantor, The geometry of two-weight codes,, Bull. London Math. Soc., 18 (1986), 97. doi: 10.1112/blms/18.2.97.

[7]

L. R. A Casse, W. A. Jackson, T. Penttila and G. F. Royle, Sets of type $(m,n)$ in $PG(2, r^2)$, $r$ odd,, in preparation., ().

[8]

W. Cherowitzo, $\alpha$-flocks and hyperovals,, Geom. Dedicata, 72 (1998), 221. doi: 10.1023/A:1005022808718.

[9]

W. Cherowitzo, C. M. O'Keefe and T. Penttila, A unified construction of finite geometries associated with q-clans in characteristic 2,, Adv. Geom., 3 (2003), 1. doi: 10.1515/advg.2003.002.

[10]

W. Cherowitzo, T. Penttila, I. Pinneri and G. F. Royle, Flocks and ovals,, Geom. Dedicata, 60 (1996), 17. doi: 10.1007/BF00150865.

[11]

F. De Clerck, S. De Winter and T. Maes, A geometric approach to Mathon maximal arcs,, J. Combin. Theorey Ser. A, 118 (2001), 1196. doi: 10.1016/j.jcta.2010.12.004.

[12]

F. De Clerck, S. De Winter and T. Maes, Partial flocks of the quadratic cone yielding Mathon maximal arcs,, Discrete Math., 312 (2012), 2421. doi: 10.1016/j.disc.2012.04.028.

[13]

F. De Clerck, S. De Winter and T. Maes, Singer 8-arcs of Mathon type in $PG(2,2^7)$,, Des. Codes Cryptogr., 64 (2012), 17. doi: 10.1007/s10623-011-9502-4.

[14]

M. J. de Resmini, A 35-set of type $(2,5)$ in $PG(2,9)$,, J. Combin. Theory Ser. A, 45 (1987), 303. doi: 10.1016/0097-3165(87)90021-5.

[15]

M. J. de Resmini and G. Migliori, A 78-set of type $(2,6)$ in $PG(2,16)$,, Ars Combin., 22 (1986), 73.

[16]

The GAP Group, GAP - Groups, Algorithms, and Programming,, available online at , ().

[17]

N. Hamilton, Maximal Arcs in Finite Projective Planes and Associated Structure in Projective Spaces,, Ph.D. thesis, (1995).

[18]

N. Hamilton, Degree 8 maximal arcs in $PG(2,2^h)$, $h$ odd,, J. Combin. Theory Ser. A, 100 (2002), 265. doi: 10.1006/jcta.2002.3297.

[19]

N. Hamilton and R. Mathon, More maximal arcs in Desarguesian projective planes and their geometric structure,, Adv. Geom., 3 (2003), 251. doi: 10.1515/advg.2003.015.

[20]

N. Hamilton and R. Mathon, On the spectrum of non-Denniston maximal arcs in $PG(2,2h)$,, Europ. J. Combin., 25 (2004), 415. doi: 10.1016/j.ejc.2003.07.006.

[21]

N. Hamilton and T. Penttila, Sets of type $(a,b)$ from subgroups of $\GammaL(1,p^R)$,, J. Algebr. Combin., 13 (2001), 67. doi: 10.1023/A:1008775818040.

[22]

R. Mathon, New maximal arcs in Desarguesian planes,, J. Combin. Theory Ser. A, 97 (2002), 353. doi: 10.1006/jcta.2001.3218.

[23]

C. M. O'Keefe and T. Penttila, A new hyperoval in $PG(2,32)$,, J. Geom., 44 (1992), 117. doi: 10.1007/BF01228288.

[24]

S. E. Payne, A new infinite family of generalized quadrangles,, Congr. Numer., 49 (1985), 115.

[25]

T. Penttila and G. F. Royle, Sets of type $(m,n)$ in the affine and projective planes of order nine,, Des. Codes Cryptogr., 6 (1995), 229. doi: 10.1007/BF01388477.

[26]

B. Schmidt and C. White, All two-weight irreducible cyclic codes?,, Finite Fields Appl., 8 (2002), 1. doi: 10.1006/ffta.2000.0293.

[27]

B. Segre, Forme e geometrie hermitiane, con particolare riguardo al caso finite,, Ann. Mat. Pura Appl., 70 (1965), 1.

[28]

M. Tallini Scafati, $\{k,n\}$-archi di un pinao grafico finito, con particolare riguardo a quelli con due caratteri. I,, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 40 (1966), 812.

[29]

M. Tallini Scafati, $\{k,n\}$-archi di un pinao grafico finito, con particolare riguardo a quelli con due caratteri. II,, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 40 (1966), 1020.

show all references

References:
[1]

A. S. Barlotti, $\{ k;n\}$-archi di un piano lineare finite,, Boll. Un. Mat. Ital., 11 (1956), 553.

[2]

L. M. Batten and J. M. Dover, Some sets of type $(m,n)$ in cubic order planes,, Des. Codes Cryptogr., 16 (1999), 211. doi: 10.1023/A:1008397209409.

[3]

A. Blokhuis and M. Lavrauw, Scattered spaces with respect to a spread in $PG(n,q)$,, Geom. Dedicata, 81 (2000), 231. doi: 10.1023/A:1005283806897.

[4]

R. C. Bose, Mathematical theory of the symmetrical factorial design,, Sankhyā Indian J. Stat., 8 (1947), 107.

[5]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I. The user language,, J. Symb. Comput., 24 (1997), 235. doi: 10.1006/jsco.1996.0125.

[6]

R. Calderbank and W. M. Kantor, The geometry of two-weight codes,, Bull. London Math. Soc., 18 (1986), 97. doi: 10.1112/blms/18.2.97.

[7]

L. R. A Casse, W. A. Jackson, T. Penttila and G. F. Royle, Sets of type $(m,n)$ in $PG(2, r^2)$, $r$ odd,, in preparation., ().

[8]

W. Cherowitzo, $\alpha$-flocks and hyperovals,, Geom. Dedicata, 72 (1998), 221. doi: 10.1023/A:1005022808718.

[9]

W. Cherowitzo, C. M. O'Keefe and T. Penttila, A unified construction of finite geometries associated with q-clans in characteristic 2,, Adv. Geom., 3 (2003), 1. doi: 10.1515/advg.2003.002.

[10]

W. Cherowitzo, T. Penttila, I. Pinneri and G. F. Royle, Flocks and ovals,, Geom. Dedicata, 60 (1996), 17. doi: 10.1007/BF00150865.

[11]

F. De Clerck, S. De Winter and T. Maes, A geometric approach to Mathon maximal arcs,, J. Combin. Theorey Ser. A, 118 (2001), 1196. doi: 10.1016/j.jcta.2010.12.004.

[12]

F. De Clerck, S. De Winter and T. Maes, Partial flocks of the quadratic cone yielding Mathon maximal arcs,, Discrete Math., 312 (2012), 2421. doi: 10.1016/j.disc.2012.04.028.

[13]

F. De Clerck, S. De Winter and T. Maes, Singer 8-arcs of Mathon type in $PG(2,2^7)$,, Des. Codes Cryptogr., 64 (2012), 17. doi: 10.1007/s10623-011-9502-4.

[14]

M. J. de Resmini, A 35-set of type $(2,5)$ in $PG(2,9)$,, J. Combin. Theory Ser. A, 45 (1987), 303. doi: 10.1016/0097-3165(87)90021-5.

[15]

M. J. de Resmini and G. Migliori, A 78-set of type $(2,6)$ in $PG(2,16)$,, Ars Combin., 22 (1986), 73.

[16]

The GAP Group, GAP - Groups, Algorithms, and Programming,, available online at , ().

[17]

N. Hamilton, Maximal Arcs in Finite Projective Planes and Associated Structure in Projective Spaces,, Ph.D. thesis, (1995).

[18]

N. Hamilton, Degree 8 maximal arcs in $PG(2,2^h)$, $h$ odd,, J. Combin. Theory Ser. A, 100 (2002), 265. doi: 10.1006/jcta.2002.3297.

[19]

N. Hamilton and R. Mathon, More maximal arcs in Desarguesian projective planes and their geometric structure,, Adv. Geom., 3 (2003), 251. doi: 10.1515/advg.2003.015.

[20]

N. Hamilton and R. Mathon, On the spectrum of non-Denniston maximal arcs in $PG(2,2h)$,, Europ. J. Combin., 25 (2004), 415. doi: 10.1016/j.ejc.2003.07.006.

[21]

N. Hamilton and T. Penttila, Sets of type $(a,b)$ from subgroups of $\GammaL(1,p^R)$,, J. Algebr. Combin., 13 (2001), 67. doi: 10.1023/A:1008775818040.

[22]

R. Mathon, New maximal arcs in Desarguesian planes,, J. Combin. Theory Ser. A, 97 (2002), 353. doi: 10.1006/jcta.2001.3218.

[23]

C. M. O'Keefe and T. Penttila, A new hyperoval in $PG(2,32)$,, J. Geom., 44 (1992), 117. doi: 10.1007/BF01228288.

[24]

S. E. Payne, A new infinite family of generalized quadrangles,, Congr. Numer., 49 (1985), 115.

[25]

T. Penttila and G. F. Royle, Sets of type $(m,n)$ in the affine and projective planes of order nine,, Des. Codes Cryptogr., 6 (1995), 229. doi: 10.1007/BF01388477.

[26]

B. Schmidt and C. White, All two-weight irreducible cyclic codes?,, Finite Fields Appl., 8 (2002), 1. doi: 10.1006/ffta.2000.0293.

[27]

B. Segre, Forme e geometrie hermitiane, con particolare riguardo al caso finite,, Ann. Mat. Pura Appl., 70 (1965), 1.

[28]

M. Tallini Scafati, $\{k,n\}$-archi di un pinao grafico finito, con particolare riguardo a quelli con due caratteri. I,, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 40 (1966), 812.

[29]

M. Tallini Scafati, $\{k,n\}$-archi di un pinao grafico finito, con particolare riguardo a quelli con due caratteri. II,, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 40 (1966), 1020.

[1]

Andrew Klapper, Andrew Mertz. The two covering radius of the two error correcting BCH code. Advances in Mathematics of Communications, 2009, 3 (1) : 83-95. doi: 10.3934/amc.2009.3.83

[2]

Jerzy Gawinecki, Wojciech M. Zajączkowski. Global regular solutions to two-dimensional thermoviscoelasticity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1009-1028. doi: 10.3934/cpaa.2016.15.1009

[3]

Dung Le. On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3245-3265. doi: 10.3934/dcdsb.2014.19.3245

[4]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[5]

Paolo D'Arco, María Isabel González Vasco, Angel L. Pérez del Pozo, Claudio Soriente, Rainer Steinwandt. Private set intersection: New generic constructions and feasibility results. Advances in Mathematics of Communications, 2017, 11 (3) : 481-502. doi: 10.3934/amc.2017040

[6]

Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial & Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1

[7]

Eemeli Blåsten, Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Problems & Imaging, 2015, 9 (3) : 709-723. doi: 10.3934/ipi.2015.9.709

[8]

Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195

[9]

V. Carmona, E. Freire, E. Ponce, F. Torres. The continuous matching of two stable linear systems can be unstable. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 689-703. doi: 10.3934/dcds.2006.16.689

[10]

Josef Diblík, Radoslav Chupáč, Miroslava Růžičková. Existence of unbounded solutions of a linear homogenous system of differential equations with two delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2447-2459. doi: 10.3934/dcdsb.2014.19.2447

[11]

David M. Bortz. Characteristic roots for two-lag linear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2409-2422. doi: 10.3934/dcdsb.2016053

[12]

Joseph M. Mahaffy, Timothy C. Busken. Regions of stability for a linear differential equation with two rationally dependent delays. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4955-4986. doi: 10.3934/dcds.2015.35.4955

[13]

Nguyen Thi Bach Kim. Finite algorithm for minimizing the product of two linear functions over a polyhedron. Journal of Industrial & Management Optimization, 2007, 3 (3) : 481-487. doi: 10.3934/jimo.2007.3.481

[14]

D. Motreanu, V. V. Motreanu, Nikolaos S. Papageorgiou. Two nontrivial solutions for periodic systems with indefinite linear part. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 197-210. doi: 10.3934/dcds.2007.19.197

[15]

Nguyen Thi Bach Kim, Nguyen Canh Nam, Le Quang Thuy. An outcome space algorithm for minimizing the product of two convex functions over a convex set. Journal of Industrial & Management Optimization, 2013, 9 (1) : 243-253. doi: 10.3934/jimo.2013.9.243

[16]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[17]

Denis S. Krotov, Patric R. J.  Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013

[18]

Dean Crnković, Marija Maksimović, Bernardo Gabriel Rodrigues, Sanja Rukavina. Self-orthogonal codes from the strongly regular graphs on up to 40 vertices. Advances in Mathematics of Communications, 2016, 10 (3) : 555-582. doi: 10.3934/amc.2016026

[19]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[20]

Jianbin Li, Niu Yu, Zhixue Liu, Lianjie Shu. Optimal rebate strategies in a two-echelon supply chain with nonlinear and linear multiplicative demands. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1587-1611. doi: 10.3934/jimo.2016.12.1587

2016 Impact Factor: 0.8

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]