February 2017, 11(1): 99-114. doi: 10.3934/amc.2017005

Cyclic codes over local Frobenius rings of order 16

1. 

Department of Mathematics, University of Scranton, Scranton, PA 18518, USA

2. 

Department of Mathematics, Fatih University, Istanbul, 34500, Turkey

3. 

Department of Mathematics, University of Scranton, Scranton, PA 18518, USA

* Corresponding author

Received  June 2015 Published  February 2017

Fund Project: The third author would like to thank TUBITAK (The Scientific and Technological Research Council of Turkey) for their support while writing this paper

We study cyclic codes over commutative local Frobenius rings of order 16 and give their binary images under a Gray map which is a generalization of the Gray maps on the rings of order 4. We prove that the binary images of cyclic codes are quasi-cyclic codes of index 4 and give examples of cyclic codes of various lengths constructed from these techniques including new optimal quasi-cyclic codes.

Citation: Steven T. Dougherty, Abidin Kaya, Esengül Saltürk. Cyclic codes over local Frobenius rings of order 16. Advances in Mathematics of Communications, 2017, 11 (1) : 99-114. doi: 10.3934/amc.2017005
References:
[1]

N. Aydin and T. Asamov, A database of $\mathbb Z_4$-codes, available at http://www.asamov.com/Z4Codes.

[2]

A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over $\mathbb{F}_2 + u\mathbb{F}_2$, Des. Codes Cryptogr., 42 (2007), 273-287. doi: 10.1109/18.761278.

[3]

A. R. Calderbank and N. J. A. Sloane, Modular and p-adic cyclic codes, Des. Codes Cryptpgr., 6 (1995), 21-35. doi: 10.1007/BF01390768.

[4]

E. Z. Chen, A database of quasi-twisted codes, available at http://moodle.tec.hkr.se/~chen/research/codes.

[5]

H. Q. Dinh and S. Lopez-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744. doi: 10.1109/TIT.2004.831789.

[6]

S. T. DoughertyS. Karadeniz and B. Yildiz, Cyclic codes over Rk, Des. Codes Cryptogr., 63 (2012), 113-126. doi: 10.1007/s10623-011-9539-4.

[7]

S. T. DoughertyE. Salturk and S. Szabo, Codes over local rings of order 16 and binary codes, Adv. math. Comm., 10 (), 379-391. doi: 10.3934/amc.2016012.

[8]

S. T. Dougherty, E. Salturk and S. Szabo, On codes over local rings: generator matrices, generating characters and MacWilliams identities, submitted.

[9]

M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, available at http://codetables.de.

[10]

A. R. Hammons Jr.P. V. KumarA. R. CalderbankN. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of Kerdoc, Preparata, Goethals and related code, IEEE Trans. Inform. Theory, 40 (1994), 301-319. doi: 10.1109/18.312154.

[11]

T. Hurley, Group rings and rings of matrices, Int. J. Pure Appl. Math., 3 (2006), 319-335.

[12]

P. Kanwar and S. Lopez-Permouth, Cyclic codes over the integers modulo pm, Finite Fields Appl., 3 (1997), 334-352. doi: 10.1006/ffta.1997.0189.

[13]

E. Martinez-Moro and S. Szabo, On codes over local Frobenius non-chain rings of order 16, Contemp. Math. , to appear. doi: 10.1090/conm/634/12702.

[14]

B. R. McDonald, Finite Rings with Identity, Dekker, New York, 1974.

[15]

V. PlessP. Solé and Z. Qian, Cyclic self-dual $\mathbb Z_4$-codes, Finite Fields Appl., 3 (1997), 48-69. doi: 10.1006/ffta.1996.0172.

[16]

E. Prange, Cyclic Error-Correcting Codes in Two Symbols, Air Force Cambridge Research Center 1957.

[17]

J. Wolfmann, Negacyclic and cyclic codes over $\mathbb Z_4$, IEEE Trans. Inform. Theory, 45 (1999), 2527-2532. doi: 10.1109/18.796397.

[18]

B. Yildiz and S. Karadeniz, Cyclic codes over $\mathbb{F}_2 + u\mathbb{F}_2 + v\mathbb{F}_2 + uv\mathbb{F}_2$, Des. Codes Cryptogr., 58 (2011), 221-234. doi: 10.1007/s10623-010-9399-3.

show all references

References:
[1]

N. Aydin and T. Asamov, A database of $\mathbb Z_4$-codes, available at http://www.asamov.com/Z4Codes.

[2]

A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over $\mathbb{F}_2 + u\mathbb{F}_2$, Des. Codes Cryptogr., 42 (2007), 273-287. doi: 10.1109/18.761278.

[3]

A. R. Calderbank and N. J. A. Sloane, Modular and p-adic cyclic codes, Des. Codes Cryptpgr., 6 (1995), 21-35. doi: 10.1007/BF01390768.

[4]

E. Z. Chen, A database of quasi-twisted codes, available at http://moodle.tec.hkr.se/~chen/research/codes.

[5]

H. Q. Dinh and S. Lopez-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744. doi: 10.1109/TIT.2004.831789.

[6]

S. T. DoughertyS. Karadeniz and B. Yildiz, Cyclic codes over Rk, Des. Codes Cryptogr., 63 (2012), 113-126. doi: 10.1007/s10623-011-9539-4.

[7]

S. T. DoughertyE. Salturk and S. Szabo, Codes over local rings of order 16 and binary codes, Adv. math. Comm., 10 (), 379-391. doi: 10.3934/amc.2016012.

[8]

S. T. Dougherty, E. Salturk and S. Szabo, On codes over local rings: generator matrices, generating characters and MacWilliams identities, submitted.

[9]

M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, available at http://codetables.de.

[10]

A. R. Hammons Jr.P. V. KumarA. R. CalderbankN. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of Kerdoc, Preparata, Goethals and related code, IEEE Trans. Inform. Theory, 40 (1994), 301-319. doi: 10.1109/18.312154.

[11]

T. Hurley, Group rings and rings of matrices, Int. J. Pure Appl. Math., 3 (2006), 319-335.

[12]

P. Kanwar and S. Lopez-Permouth, Cyclic codes over the integers modulo pm, Finite Fields Appl., 3 (1997), 334-352. doi: 10.1006/ffta.1997.0189.

[13]

E. Martinez-Moro and S. Szabo, On codes over local Frobenius non-chain rings of order 16, Contemp. Math. , to appear. doi: 10.1090/conm/634/12702.

[14]

B. R. McDonald, Finite Rings with Identity, Dekker, New York, 1974.

[15]

V. PlessP. Solé and Z. Qian, Cyclic self-dual $\mathbb Z_4$-codes, Finite Fields Appl., 3 (1997), 48-69. doi: 10.1006/ffta.1996.0172.

[16]

E. Prange, Cyclic Error-Correcting Codes in Two Symbols, Air Force Cambridge Research Center 1957.

[17]

J. Wolfmann, Negacyclic and cyclic codes over $\mathbb Z_4$, IEEE Trans. Inform. Theory, 45 (1999), 2527-2532. doi: 10.1109/18.796397.

[18]

B. Yildiz and S. Karadeniz, Cyclic codes over $\mathbb{F}_2 + u\mathbb{F}_2 + v\mathbb{F}_2 + uv\mathbb{F}_2$, Des. Codes Cryptogr., 58 (2011), 221-234. doi: 10.1007/s10623-010-9399-3.

Table 1.  One-generator cyclic codes over $\mathbb{F}_{2}\left[u, v\right] /\left\langle u^{2}+v^{2}, uv\right\rangle $
$n$ $f\left(x\right) $ $\phi \left({C}\right) $
3 $\left(0, z_{4}, z_{4}\right) $ $\left[12, 2, 8\right] _{2}^{\ast }$
3 $\left(z_{7}, z_{2}, z_{8}\right) $ $\left[12, 4, 6\right] _{2}^{\ast }$
3 $\left(z_{1}, z_{8}, z_{6}\right) $ $\left[12, 6, 4\right] _{2}^{\ast }$
3 $\left(y_{7}, y_{5}, y_{2}\right) $ $\left[12, 8, 3\right] _{2}^{\ast }$
5 $\left(z_{7}, z_{2}, z_{2}, z_{7}, z_{1}\right) $ $\left[20, 8, 8\right] _{2}^{\ast }$
5 $\left(y_{4}, y_{1}, y_{3}, y_{2}, y_{5}\right) $ $\left[20, 12, 4\right] _{2}^{\ast }$
7 $\left(z_{4}, z_{1}, z_{4}, z_{1}, z_{1}, z_{4}, z_{4}\right) $ $\left[28, 3, 16\right] _{2}^{\ast }$
7 $\left(z_{7}, z_{5}, z_{7}, z_{6}, z_{6}, z_{5}, z_{1}\right) $ $\left[28, 6, 12\right] _{2}^{\ast }$
7 $\left(z_{6}, z_{5}, z_{6}, z_{3}, z_{3}, z_{5}, z_{4}\right) $ $\left[28, 7, 12\right] _{2}^{\ast }$
7 $\left(z_{7}, z_{2}, z_{2}, z_{4}, z_{5}, z_{7}, z_{4}\right) $ $\left[28, 8, 10\right] _{2}^{\ast -1}$
7 $\left(z_{5}, z_{2}, z_{2}, z_{4}, z_{5}, z_{7}, z_{4}\right) $ $\left[28, 12, 8\right] _{2}^{\ast }$
7 $\left(y_{1}, y_{1}, y_{4}, z_{2}, y_{6}, z_{8}, z_{5}\right) $ $\left[28, 19, 4\right] _{2}^{\ast }$
7 $\left(y_{2}, y_{4}, y_{4}, z_{8}, y_{1}, z_{5}, z_{1}\right) $ $\left[28, 20, 4\right] _{2}^{\ast }$
9 $\left(z_{8}, z_{8}, z_{3}, z_{4}, z_{3}, z_{6}, z_{2}, z_{5}, z_{5}\right) $ $\left[36, 16, 8\right] _{2}^{\ast -2}$
9 $\left(y_{7}, z_{6}, y_{2}, y_{5}, z_{1}, y_{8}, y_{2}, z_{1}, y_{8}\right) $ $\left[36, 20, 6\right] _{2}^{\ast -2}$
15 $\left(z_{5}, z_{3}, z_{4}, z_{1}, z_{4}, z_{6}, z_{7}, z_{5}, z_{7}, z_{1}, z_{3}, z_{6}, z_{3}, z_{4}, z_{7}\right) $ $\left[60, 20, 16\right] _{2}^{b-1}$
15 $\left(z_{4}, y_{7}, z_{7}, z_{1}, y_{5}, z_{5}, z_{3}, y_{8}, z_{8}, y_{4}, z_{4}, z_{2}, z_{3}, z_{6}, z_{7}\right) $ $\left[60, 50, 4\right] _{2}^{\ast }$
17 $\left(z_{7}, z_{1}, z_{2}, z_{8}, y_{2}, y_{7}, y_{7}, z_{1}, z_{3}, y_{2}, y_{3}, z_{6}, z_{3}, y_{4}, y_{4}, y_{3}, z_{6}\right) $ $\left[68, 48, 6\right] _{2}^{\ast -2}$
21 $\left(z_{4}y_{3}y_{1}y_{8}z_{3}y_{2}z_{3}z_{2}z_{2}y_{2}y_{7}y_{2}y_{5}y_{8}z_{1}z_{2}y_{5}y_{6}y_{1}z_{6}z_{1}\right) $ $\left[84, 58, 8\right] _{2}^{b}$
21 $\left(y_{2}y_{6}y_{4}y_{7}y_{5}z_{8}z_{3}y_{1}z_{5}y_{8}y_{4}z_{4}y_{3}z_{2}z_{3}z_{7}z_{4}z_{6}z_{8}y_{3}y_{8}\right) $ $\left[84, 62, 6\right] _{2}^{b-2}$
21 $\left(y_{2}z_{2}z_{6}y_{8}z_{3}y_{3}y_{3}z_{3}z_{1}z_{6}z_{8}z_{2}y_{1}z_{8}z_{7}z_{2}y_{1}y_{4}z_{8}y_{5}z_{7}\right) $ $\left[84, 72, 4\right] _{2}^{b}$
23 $% (y_{4}y_{4}y_{4}y_{1}y_{6}z_{8}y_{1}z_{6}y_{2}y_{2}z_{1}z_{4}y_{4}y_{1}z_{4}z_{6}y_{1}z_{7}y_{6}z_{1}z_{7}z_{3}z_{6}) $ $\left[92, 66, 8\right] _{2}^{\ast }$
$n$ $f\left(x\right) $ $\phi \left({C}\right) $
3 $\left(0, z_{4}, z_{4}\right) $ $\left[12, 2, 8\right] _{2}^{\ast }$
3 $\left(z_{7}, z_{2}, z_{8}\right) $ $\left[12, 4, 6\right] _{2}^{\ast }$
3 $\left(z_{1}, z_{8}, z_{6}\right) $ $\left[12, 6, 4\right] _{2}^{\ast }$
3 $\left(y_{7}, y_{5}, y_{2}\right) $ $\left[12, 8, 3\right] _{2}^{\ast }$
5 $\left(z_{7}, z_{2}, z_{2}, z_{7}, z_{1}\right) $ $\left[20, 8, 8\right] _{2}^{\ast }$
5 $\left(y_{4}, y_{1}, y_{3}, y_{2}, y_{5}\right) $ $\left[20, 12, 4\right] _{2}^{\ast }$
7 $\left(z_{4}, z_{1}, z_{4}, z_{1}, z_{1}, z_{4}, z_{4}\right) $ $\left[28, 3, 16\right] _{2}^{\ast }$
7 $\left(z_{7}, z_{5}, z_{7}, z_{6}, z_{6}, z_{5}, z_{1}\right) $ $\left[28, 6, 12\right] _{2}^{\ast }$
7 $\left(z_{6}, z_{5}, z_{6}, z_{3}, z_{3}, z_{5}, z_{4}\right) $ $\left[28, 7, 12\right] _{2}^{\ast }$
7 $\left(z_{7}, z_{2}, z_{2}, z_{4}, z_{5}, z_{7}, z_{4}\right) $ $\left[28, 8, 10\right] _{2}^{\ast -1}$
7 $\left(z_{5}, z_{2}, z_{2}, z_{4}, z_{5}, z_{7}, z_{4}\right) $ $\left[28, 12, 8\right] _{2}^{\ast }$
7 $\left(y_{1}, y_{1}, y_{4}, z_{2}, y_{6}, z_{8}, z_{5}\right) $ $\left[28, 19, 4\right] _{2}^{\ast }$
7 $\left(y_{2}, y_{4}, y_{4}, z_{8}, y_{1}, z_{5}, z_{1}\right) $ $\left[28, 20, 4\right] _{2}^{\ast }$
9 $\left(z_{8}, z_{8}, z_{3}, z_{4}, z_{3}, z_{6}, z_{2}, z_{5}, z_{5}\right) $ $\left[36, 16, 8\right] _{2}^{\ast -2}$
9 $\left(y_{7}, z_{6}, y_{2}, y_{5}, z_{1}, y_{8}, y_{2}, z_{1}, y_{8}\right) $ $\left[36, 20, 6\right] _{2}^{\ast -2}$
15 $\left(z_{5}, z_{3}, z_{4}, z_{1}, z_{4}, z_{6}, z_{7}, z_{5}, z_{7}, z_{1}, z_{3}, z_{6}, z_{3}, z_{4}, z_{7}\right) $ $\left[60, 20, 16\right] _{2}^{b-1}$
15 $\left(z_{4}, y_{7}, z_{7}, z_{1}, y_{5}, z_{5}, z_{3}, y_{8}, z_{8}, y_{4}, z_{4}, z_{2}, z_{3}, z_{6}, z_{7}\right) $ $\left[60, 50, 4\right] _{2}^{\ast }$
17 $\left(z_{7}, z_{1}, z_{2}, z_{8}, y_{2}, y_{7}, y_{7}, z_{1}, z_{3}, y_{2}, y_{3}, z_{6}, z_{3}, y_{4}, y_{4}, y_{3}, z_{6}\right) $ $\left[68, 48, 6\right] _{2}^{\ast -2}$
21 $\left(z_{4}y_{3}y_{1}y_{8}z_{3}y_{2}z_{3}z_{2}z_{2}y_{2}y_{7}y_{2}y_{5}y_{8}z_{1}z_{2}y_{5}y_{6}y_{1}z_{6}z_{1}\right) $ $\left[84, 58, 8\right] _{2}^{b}$
21 $\left(y_{2}y_{6}y_{4}y_{7}y_{5}z_{8}z_{3}y_{1}z_{5}y_{8}y_{4}z_{4}y_{3}z_{2}z_{3}z_{7}z_{4}z_{6}z_{8}y_{3}y_{8}\right) $ $\left[84, 62, 6\right] _{2}^{b-2}$
21 $\left(y_{2}z_{2}z_{6}y_{8}z_{3}y_{3}y_{3}z_{3}z_{1}z_{6}z_{8}z_{2}y_{1}z_{8}z_{7}z_{2}y_{1}y_{4}z_{8}y_{5}z_{7}\right) $ $\left[84, 72, 4\right] _{2}^{b}$
23 $% (y_{4}y_{4}y_{4}y_{1}y_{6}z_{8}y_{1}z_{6}y_{2}y_{2}z_{1}z_{4}y_{4}y_{1}z_{4}z_{6}y_{1}z_{7}y_{6}z_{1}z_{7}z_{3}z_{6}) $ $\left[92, 66, 8\right] _{2}^{\ast }$
Table 2.  Two-generator cyclic codes over $\mathbb{F}_{2}\left[u, v\right] /\left\langle u^{2}+v^{2}, uv\right\rangle $
$n$ $\left. f\left(x\right), g\left(x\right) \right. $ $\phi \left({C}\right) $
3 $\left. \left(z_{6}, z_{5, }z_{7}\right), \left(z_{8}, z_{8}, z_{8}\right) \right. $ $\left[12, 6, 4\right] _{2}^{\ast }$
3 $\left. \left(z_{8}, z_{6}, z_{7}\right), \left(z_{5}, z_{3}, z_{6}\right) \right. $ $\left[12, 7, 4\right] _{2}^{\ast }$
5 $\left. \left(z_{7}, z_{2}, z_{2}, z_{7}, z_{1}\right), \left(z_{3}, z_{3}, z_{3}, z_{7}, z_{1}\right) \right. $ $\left[20, 13, 4\right] _{2}^{\ast }$
7 $\left. \left(z_{7}, z_{4}, z_{4}, z_{6}, z_{2}, z_{4}, z_{7}\right), \left(z_{8}, z_{5}, z_{1}, z_{1}, z_{4}, z_{2}, z_{2}\right) \right. $ $\left[28, 15, 6% \right] _{2}^{\ast }$
7 $\left. \left(z_{5}, z_{5}, z_{7}, z_{2}, z_{4}, z_{7}, z_{6}\right), \left(z_{5}, y_{2}z_{8}, y_{5}, y_{1}, y_{1}, z_{7}\right) \right. $ $\left[28, 21, 4% \right] _{2}^{\ast }$
7 $\left. \left(z_{5}, z_{5}, z_{7}, z_{2}, z_{4}, z_{7}, z_{6}\right), \left(z_{7}, y_{5}, z_{1}, y_{7}, y_{2}, y_{4}, z_{3}\right) \right. $ $\left[28, 22, 4% \right] _{2}^{\ast }$
15 $\left. \begin{array}{c} \left(z_{5}, z_{3}, z_{4}, z_{1}, z_{4}, z_{6}, z_{7}, z_{5}, z_{7}, z_{1}, z_{3}, z_{6}, z_{3}, z_{4}, z_{7}\right), \\ \left(z_{2}, z_{7}, z_{3}, z_{7}, z_{3}, z_{1}, z_{8}, z_{6}, z_{3}, z_{2}, z_{1}, z_{4}, z_{4}, z_{3}, z_{6}\right)% \end{array}% \right. $ $\left[60, 28, 10\right] _{2}^{b-2}$
15 $\left. \begin{array}{c} \left(z_{5}, z_{3}, z_{4}, z_{1}, z_{4}, z_{6}, z_{7}, z_{5}, z_{7}, z_{1}, z_{3}, z_{6}, z_{3}, z_{4}, z_{7}\right), \\ \left(z_{4}, y_{1}, z_{3}, z_{7}, z_{8}, y_{2}, z_{4}, z_{5}, y_{2}, y_{5}, y_{5}, y_{7}, y_{8}, y_{6}, z_{4}\right)% \end{array}% \right.$ $\left[60, 44, 6\right] _{2}^{b}$
17 $\left. \begin{array}{c} \left(z_{7}, z_{1}, z_{2}, z_{8}, y_{2}, y_{7}, y_{7}, z_{1}, z_{3}, y_{2}, y_{3}, z_{6}, z_{3}, y_{4}, y_{4}, y_{3}, z_{6}\right), \\ \left(y_{5}, y_{8}, z_{2}, y_{7}, y_{5}, z_{2}, z_{7}, y_{5}, z_{1}, y_{7}, y_{2}, y_{2}, y_{8}, z_{4}, y_{6}, z_{6}, z_{2}\right)% \end{array}% \right.$ $\left[68, 56, 4\right] _{2}^{b}$
17 $\left. \begin{array}{c} \left(z_{7}, z_{1}, z_{2}, z_{8}, y_{2}, y_{7}, y_{7}, z_{1}, z_{3}, y_{2}, y_{3}, z_{6}, z_{3}, y_{4}, y_{4}, y_{3}, z_{6}\right), \\ \left(z_{1}, z_{5}, y_{3}, y_{8}, z_{6}, z_{4}, z_{2}, z_{6}, y_{7}, y_{5}, z_{3}, z_{2}, y_{2}, z_{3}, z_{7}, z_{6}, y_{2}\right)% \end{array}% \right.$ $\left[68, 57, 4\right] _{2}^{b}$
21 $\left. \begin{array}{c} \left(z_{4}y_{3}y_{1}y_{8}z_{3}y_{2}z_{3}z_{2}z_{2}y_{2}y_{7}y_{2}y_{5}y_{8}z_{1}z_{2}y_{5}y_{6}y_{1}z_{6}z_{1}\right), \\ \left(z_{3}z_{6}z_{3}z_{1}z_{1}z_{8}z_{3}z_{1}z_{6}z_{6}z_{4}z_{2}z_{3}z_{5}z_{8}z_{4}z_{5}z_{4}z_{7}z_{1}z_{7}\right)% \end{array}% \right.$ $\left[84, 63, 6\right] _{2}^{\ast -2}$
21 $\left. \begin{array}{c} \left(z_{4}y_{3}y_{1}y_{8}z_{3}y_{2}z_{3}z_{2}z_{2}y_{2}y_{7}y_{2}y_{5}y_{8}z_{1}z_{2}y_{5}y_{6}y_{1}z_{6}z_{1}\right), \\ \left(z_{6}y_{4}y_{8}z_{3}z_{7}z_{3}y_{5}y_{7}y_{5}z_{7}y_{7}z_{8}y_{4}z_{8}y_{3}y_{2}y_{4}z_{5}y_{3}z_{1}y_{2}\right)% \end{array}% \right.$ $\left[84, 75, 4\right] _{2}^{\ast }$
21 $\left. \begin{array}{c} \left(z_{4}y_{3}y_{1}y_{8}z_{3}y_{2}z_{3}z_{2}z_{2}y_{2}y_{7}y_{2}y_{5}y_{8}z_{1}z_{2}y_{5}y_{6}y_{1}z_{6}z_{1}\right), \\ \left(y_{6}y_{5}z_{7}y_{5}y_{5}z_{1}y_{2}y_{4}y_{6}z_{6}z_{4}y_{3}z_{8}z_{1}z_{5}y_{4}y_{4}z_{7}z_{8}z_{8}z_{6}\right)% \end{array}% \right.$ $\left[84, 76, 4\right] _{2}^{\ast }$
23 $\left. \begin{array}{c} (y_{4}y_{4}y_{4}y_{1}y_{6}z_{8}y_{1}z_{6}y_{2}y_{2}z_{1}z_{4}y_{4}y_{1}z_{4}z_{6}y_{1}z_{7}y_{6}z_{1}z_{7}z_{3}z_{6}), \\ \left(z_{5}z_{3}z_{1}z_{7}z_{6}z_{3}z_{5}z_{1}z_{3}z_{2}z_{5}z_{2}z_{2}z_{4}z_{7}z_{1}z_{1}z_{3}z_{2}z_{8}z_{3}z_{8}z_{4}\right)% \end{array}% \right. $ $\left[92, 78, 4\right] _{2}^{b-1}$
$n$ $\left. f\left(x\right), g\left(x\right) \right. $ $\phi \left({C}\right) $
3 $\left. \left(z_{6}, z_{5, }z_{7}\right), \left(z_{8}, z_{8}, z_{8}\right) \right. $ $\left[12, 6, 4\right] _{2}^{\ast }$
3 $\left. \left(z_{8}, z_{6}, z_{7}\right), \left(z_{5}, z_{3}, z_{6}\right) \right. $ $\left[12, 7, 4\right] _{2}^{\ast }$
5 $\left. \left(z_{7}, z_{2}, z_{2}, z_{7}, z_{1}\right), \left(z_{3}, z_{3}, z_{3}, z_{7}, z_{1}\right) \right. $ $\left[20, 13, 4\right] _{2}^{\ast }$
7 $\left. \left(z_{7}, z_{4}, z_{4}, z_{6}, z_{2}, z_{4}, z_{7}\right), \left(z_{8}, z_{5}, z_{1}, z_{1}, z_{4}, z_{2}, z_{2}\right) \right. $ $\left[28, 15, 6% \right] _{2}^{\ast }$
7 $\left. \left(z_{5}, z_{5}, z_{7}, z_{2}, z_{4}, z_{7}, z_{6}\right), \left(z_{5}, y_{2}z_{8}, y_{5}, y_{1}, y_{1}, z_{7}\right) \right. $ $\left[28, 21, 4% \right] _{2}^{\ast }$
7 $\left. \left(z_{5}, z_{5}, z_{7}, z_{2}, z_{4}, z_{7}, z_{6}\right), \left(z_{7}, y_{5}, z_{1}, y_{7}, y_{2}, y_{4}, z_{3}\right) \right. $ $\left[28, 22, 4% \right] _{2}^{\ast }$
15 $\left. \begin{array}{c} \left(z_{5}, z_{3}, z_{4}, z_{1}, z_{4}, z_{6}, z_{7}, z_{5}, z_{7}, z_{1}, z_{3}, z_{6}, z_{3}, z_{4}, z_{7}\right), \\ \left(z_{2}, z_{7}, z_{3}, z_{7}, z_{3}, z_{1}, z_{8}, z_{6}, z_{3}, z_{2}, z_{1}, z_{4}, z_{4}, z_{3}, z_{6}\right)% \end{array}% \right. $ $\left[60, 28, 10\right] _{2}^{b-2}$
15 $\left. \begin{array}{c} \left(z_{5}, z_{3}, z_{4}, z_{1}, z_{4}, z_{6}, z_{7}, z_{5}, z_{7}, z_{1}, z_{3}, z_{6}, z_{3}, z_{4}, z_{7}\right), \\ \left(z_{4}, y_{1}, z_{3}, z_{7}, z_{8}, y_{2}, z_{4}, z_{5}, y_{2}, y_{5}, y_{5}, y_{7}, y_{8}, y_{6}, z_{4}\right)% \end{array}% \right.$ $\left[60, 44, 6\right] _{2}^{b}$
17 $\left. \begin{array}{c} \left(z_{7}, z_{1}, z_{2}, z_{8}, y_{2}, y_{7}, y_{7}, z_{1}, z_{3}, y_{2}, y_{3}, z_{6}, z_{3}, y_{4}, y_{4}, y_{3}, z_{6}\right), \\ \left(y_{5}, y_{8}, z_{2}, y_{7}, y_{5}, z_{2}, z_{7}, y_{5}, z_{1}, y_{7}, y_{2}, y_{2}, y_{8}, z_{4}, y_{6}, z_{6}, z_{2}\right)% \end{array}% \right.$ $\left[68, 56, 4\right] _{2}^{b}$
17 $\left. \begin{array}{c} \left(z_{7}, z_{1}, z_{2}, z_{8}, y_{2}, y_{7}, y_{7}, z_{1}, z_{3}, y_{2}, y_{3}, z_{6}, z_{3}, y_{4}, y_{4}, y_{3}, z_{6}\right), \\ \left(z_{1}, z_{5}, y_{3}, y_{8}, z_{6}, z_{4}, z_{2}, z_{6}, y_{7}, y_{5}, z_{3}, z_{2}, y_{2}, z_{3}, z_{7}, z_{6}, y_{2}\right)% \end{array}% \right.$ $\left[68, 57, 4\right] _{2}^{b}$
21 $\left. \begin{array}{c} \left(z_{4}y_{3}y_{1}y_{8}z_{3}y_{2}z_{3}z_{2}z_{2}y_{2}y_{7}y_{2}y_{5}y_{8}z_{1}z_{2}y_{5}y_{6}y_{1}z_{6}z_{1}\right), \\ \left(z_{3}z_{6}z_{3}z_{1}z_{1}z_{8}z_{3}z_{1}z_{6}z_{6}z_{4}z_{2}z_{3}z_{5}z_{8}z_{4}z_{5}z_{4}z_{7}z_{1}z_{7}\right)% \end{array}% \right.$ $\left[84, 63, 6\right] _{2}^{\ast -2}$
21 $\left. \begin{array}{c} \left(z_{4}y_{3}y_{1}y_{8}z_{3}y_{2}z_{3}z_{2}z_{2}y_{2}y_{7}y_{2}y_{5}y_{8}z_{1}z_{2}y_{5}y_{6}y_{1}z_{6}z_{1}\right), \\ \left(z_{6}y_{4}y_{8}z_{3}z_{7}z_{3}y_{5}y_{7}y_{5}z_{7}y_{7}z_{8}y_{4}z_{8}y_{3}y_{2}y_{4}z_{5}y_{3}z_{1}y_{2}\right)% \end{array}% \right.$ $\left[84, 75, 4\right] _{2}^{\ast }$
21 $\left. \begin{array}{c} \left(z_{4}y_{3}y_{1}y_{8}z_{3}y_{2}z_{3}z_{2}z_{2}y_{2}y_{7}y_{2}y_{5}y_{8}z_{1}z_{2}y_{5}y_{6}y_{1}z_{6}z_{1}\right), \\ \left(y_{6}y_{5}z_{7}y_{5}y_{5}z_{1}y_{2}y_{4}y_{6}z_{6}z_{4}y_{3}z_{8}z_{1}z_{5}y_{4}y_{4}z_{7}z_{8}z_{8}z_{6}\right)% \end{array}% \right.$ $\left[84, 76, 4\right] _{2}^{\ast }$
23 $\left. \begin{array}{c} (y_{4}y_{4}y_{4}y_{1}y_{6}z_{8}y_{1}z_{6}y_{2}y_{2}z_{1}z_{4}y_{4}y_{1}z_{4}z_{6}y_{1}z_{7}y_{6}z_{1}z_{7}z_{3}z_{6}), \\ \left(z_{5}z_{3}z_{1}z_{7}z_{6}z_{3}z_{5}z_{1}z_{3}z_{2}z_{5}z_{2}z_{2}z_{4}z_{7}z_{1}z_{1}z_{3}z_{2}z_{8}z_{3}z_{8}z_{4}\right)% \end{array}% \right. $ $\left[92, 78, 4\right] _{2}^{b-1}$
Table 3.  Some cyclic codes over $\mathbb{Z}_{4}\left[u\right] /\left\langle u^{2}-2\right\rangle $
$n$ $f\left(x\right) $ $\phi _{\mathbb{Z}_{4}}\left({C}\right) $ $\phi \left({C}\right) $
3 $\left(00|02|02\right) $ $\left(3, 4^{0}2^{2}, 8\right) $ $\left[12, 2, 8\right] _{2}^{\ast }$
3 $\left(03|03|03\right) $ $\left(3, 4^{1}2^{1}, 6\right) $ $\left[12, 3, 6\right] _{2}^{\ast }$
3 $\left(01|00|01\right) $ $\left(3, 4^{2}2^{3}, 6\right) $ $\left[12, 7, 4\right] _{2}^{\ast }$
5 $\left(21|21|21|21|21\right) $ $\left(10, 4^{1}2^{1}, 10\right) $ $% \left[20, 3, 10\right] _{2}^{\ast -1}$
5 $\left(01|22|01|01|23\right) $ $\left(10, 4^{4}2^{4}, 4\right) $ $% \left(20, 2^{12}, 4\right) _{2}^{\ast }$
5 $\left(03|03|21|23|00\right) $ $\left(10, 4^{4}2^{5}, 4\right) $ $% \left[20, 13, 4\right] _{2}^{\ast }$
7 $\left(00|02|00|02|02|02|00\right) $ $\left(14, 4^{0}2^{3}, 8\right) $ $\left[28, 3, 16\right] _{2}^{\ast }$
7 $\left(23|21|21|23|23|23|21\right) $ $\left(14, 4^{1}2^{4}, 8\right) $ $\left[28, 6, 12\right] _{2}^{\ast }$
7 $\left(22|23|00|01|23|01|22\right) $ $\left(14, 4^{3}2^{6}, 8\right) $ $\left[28, 12, 8\right] _{2}^{\ast }$
7 $\left(11|13|23|20|02|33|00\right) $ $\left(14, 4^{6}2^{3}, 6\right) $ $\left(28, 2^{15}, 6\right) _{2}^{\ast }$
7 $\left(23|00|30|01|11|33|02\right) $ $\left(14, 4^{8}2^{3}, 4\right) $ $\left(28, 2^{19}, 4\right) _{2}^{\ast }$
7 $\left(33|30|11|22|12|00|20\right) $ $\left(14, 4^{9}2^{3}, 4\right) $ $\left(28, 2^{21}, 4\right) _{2}^{\ast }$
7 $\left(32|01|33|33|11|21|03\right) $ $\left(14, 4^{9}2^{4}, 4\right) $ $\left(28, 2^{22}, 4\right) _{2}^{\ast }$
9 $\left(33|23|33|32|03|30|13|21|32\right) $ $\left(18, 4^{10}2^{6}, 4\right) $ $\left(36, 2^{26}, 4\right) _{2}^{\ast }$
9 $\left(12|02|11|32|21|10|30|20|32\right) $ $\left(18, 4^{10}2^{7}, 4\right) $ $\left(36, 2^{27}, 4\right) _{2}^{\ast }$
17 $\left(02|20|01|30|32|32|02|03|31|31|32|21|33|20|21\right) $ $\left(34, 4^{24}2^{9}, 4\right) $ $\left(68, 2^{57}, 4\right) _{2}^{\ast }$
$n$ $f\left(x\right) $ $\phi _{\mathbb{Z}_{4}}\left({C}\right) $ $\phi \left({C}\right) $
3 $\left(00|02|02\right) $ $\left(3, 4^{0}2^{2}, 8\right) $ $\left[12, 2, 8\right] _{2}^{\ast }$
3 $\left(03|03|03\right) $ $\left(3, 4^{1}2^{1}, 6\right) $ $\left[12, 3, 6\right] _{2}^{\ast }$
3 $\left(01|00|01\right) $ $\left(3, 4^{2}2^{3}, 6\right) $ $\left[12, 7, 4\right] _{2}^{\ast }$
5 $\left(21|21|21|21|21\right) $ $\left(10, 4^{1}2^{1}, 10\right) $ $% \left[20, 3, 10\right] _{2}^{\ast -1}$
5 $\left(01|22|01|01|23\right) $ $\left(10, 4^{4}2^{4}, 4\right) $ $% \left(20, 2^{12}, 4\right) _{2}^{\ast }$
5 $\left(03|03|21|23|00\right) $ $\left(10, 4^{4}2^{5}, 4\right) $ $% \left[20, 13, 4\right] _{2}^{\ast }$
7 $\left(00|02|00|02|02|02|00\right) $ $\left(14, 4^{0}2^{3}, 8\right) $ $\left[28, 3, 16\right] _{2}^{\ast }$
7 $\left(23|21|21|23|23|23|21\right) $ $\left(14, 4^{1}2^{4}, 8\right) $ $\left[28, 6, 12\right] _{2}^{\ast }$
7 $\left(22|23|00|01|23|01|22\right) $ $\left(14, 4^{3}2^{6}, 8\right) $ $\left[28, 12, 8\right] _{2}^{\ast }$
7 $\left(11|13|23|20|02|33|00\right) $ $\left(14, 4^{6}2^{3}, 6\right) $ $\left(28, 2^{15}, 6\right) _{2}^{\ast }$
7 $\left(23|00|30|01|11|33|02\right) $ $\left(14, 4^{8}2^{3}, 4\right) $ $\left(28, 2^{19}, 4\right) _{2}^{\ast }$
7 $\left(33|30|11|22|12|00|20\right) $ $\left(14, 4^{9}2^{3}, 4\right) $ $\left(28, 2^{21}, 4\right) _{2}^{\ast }$
7 $\left(32|01|33|33|11|21|03\right) $ $\left(14, 4^{9}2^{4}, 4\right) $ $\left(28, 2^{22}, 4\right) _{2}^{\ast }$
9 $\left(33|23|33|32|03|30|13|21|32\right) $ $\left(18, 4^{10}2^{6}, 4\right) $ $\left(36, 2^{26}, 4\right) _{2}^{\ast }$
9 $\left(12|02|11|32|21|10|30|20|32\right) $ $\left(18, 4^{10}2^{7}, 4\right) $ $\left(36, 2^{27}, 4\right) _{2}^{\ast }$
17 $\left(02|20|01|30|32|32|02|03|31|31|32|21|33|20|21\right) $ $\left(34, 4^{24}2^{9}, 4\right) $ $\left(68, 2^{57}, 4\right) _{2}^{\ast }$
Table 4.  Some cyclic codes over $\mathbb{Z}_{16}$
$n$ $f\left(x\right) $ ${C}$ $\phi \left({C}\right) $
3 $\left(8, 8, 0\right) $ $\left[3, 2^{2}, 8\right] $ $\left(12, 2^{2}, 8\right) _{2}^{\ast }$
3 $\left(6, 6, 6\right) $ $\left[3, 8^{1}, 6\right] $ $\left(12, 2^{3}, 6\right) _{2}^{\ast }$
3 $\left(12, 4, 8\right) $ $\left[3, 4^{2}2^{1}, 4\right] $ $\left(12, 2^{5}, 4\right) _{2}^{\ast }$
3 $\left(4, 6, 6\right) $ $\left[3, 8^{2}, 4\right] $ $\left(12, 2^{6}, 4\right) _{2}^{\ast }$
3 $\left(2, 2, 4\right) $ $\left[3, 8^{2}2^{1}, 4\right] $ $\left(12, 2^{7}, 4\right) _{2}^{\ast }$
3 $\left(11, 3, 12\right) $ $\left[5, 8^{4}, 4\right] $ $\left(12, 2^{11}, 2\right) _{2}^{\ast }$
5 $\left(14, 10, 6, 6, 12\right) $ $\left[5, 8^{4}, 4\right] $ $\left(20, 2^{12}, 4\right) _{2}^{\ast }$
5 $\left(12, 14, 8, 4, 2\right) $ $\left[5, 8^{4}2^{1}, 4\right] $ $\left(20, 2^{13}, 4\right) _{2}^{\ast }$
5 $\left(13, 6, 7, 10, 12\right) $ $\left[5, 16^{4}, 2\right] $ $\left(20, 2^{16}, 2\right) _{2}^{\ast }$
5 $\left(7, 5, 3, 11, 14\right) $ $\left[5, 16^{4}2^{1}, 2\right] $ $% \left(20, 2^{17}, 2\right) _{2}^{\ast }$
7 $\left(10, 12, 6, 10, 2, 8, 0\right) $ $\left[7, 8^{3}, 10\right] $ $% \left(28, 2^{9}, 10\right) _{2}^{\ast }$
7 $\left(2, 12, 12, 6, 12, 14, 6\right) $ $\left[7, 8^{3}2^{3}, 8\right] $ $% \left(28, 2^{12}, 8\right) _{2}^{\ast }$
7 $\left(13, 11, 7, 13, 1, 5, 7\right) $ $\left[7, 16^{1}8^{3}, 7\right] $ $% \left(28, 2^{13}, 7\right) _{2}^{\ast -1}$
7 $\left(1, 4, 14, 7, 11, 7, 4\right) $ $\left[7, 16^{3}2^{3}, 6\right] $ $% \left(28, 2^{15}, 6\right) _{2}^{\ast }$
$n$ $f\left(x\right) $ ${C}$ $\phi \left({C}\right) $
3 $\left(8, 8, 0\right) $ $\left[3, 2^{2}, 8\right] $ $\left(12, 2^{2}, 8\right) _{2}^{\ast }$
3 $\left(6, 6, 6\right) $ $\left[3, 8^{1}, 6\right] $ $\left(12, 2^{3}, 6\right) _{2}^{\ast }$
3 $\left(12, 4, 8\right) $ $\left[3, 4^{2}2^{1}, 4\right] $ $\left(12, 2^{5}, 4\right) _{2}^{\ast }$
3 $\left(4, 6, 6\right) $ $\left[3, 8^{2}, 4\right] $ $\left(12, 2^{6}, 4\right) _{2}^{\ast }$
3 $\left(2, 2, 4\right) $ $\left[3, 8^{2}2^{1}, 4\right] $ $\left(12, 2^{7}, 4\right) _{2}^{\ast }$
3 $\left(11, 3, 12\right) $ $\left[5, 8^{4}, 4\right] $ $\left(12, 2^{11}, 2\right) _{2}^{\ast }$
5 $\left(14, 10, 6, 6, 12\right) $ $\left[5, 8^{4}, 4\right] $ $\left(20, 2^{12}, 4\right) _{2}^{\ast }$
5 $\left(12, 14, 8, 4, 2\right) $ $\left[5, 8^{4}2^{1}, 4\right] $ $\left(20, 2^{13}, 4\right) _{2}^{\ast }$
5 $\left(13, 6, 7, 10, 12\right) $ $\left[5, 16^{4}, 2\right] $ $\left(20, 2^{16}, 2\right) _{2}^{\ast }$
5 $\left(7, 5, 3, 11, 14\right) $ $\left[5, 16^{4}2^{1}, 2\right] $ $% \left(20, 2^{17}, 2\right) _{2}^{\ast }$
7 $\left(10, 12, 6, 10, 2, 8, 0\right) $ $\left[7, 8^{3}, 10\right] $ $% \left(28, 2^{9}, 10\right) _{2}^{\ast }$
7 $\left(2, 12, 12, 6, 12, 14, 6\right) $ $\left[7, 8^{3}2^{3}, 8\right] $ $% \left(28, 2^{12}, 8\right) _{2}^{\ast }$
7 $\left(13, 11, 7, 13, 1, 5, 7\right) $ $\left[7, 16^{1}8^{3}, 7\right] $ $% \left(28, 2^{13}, 7\right) _{2}^{\ast -1}$
7 $\left(1, 4, 14, 7, 11, 7, 4\right) $ $\left[7, 16^{3}2^{3}, 6\right] $ $% \left(28, 2^{15}, 6\right) _{2}^{\ast }$
[1]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

[2]

Steven T. Dougherty, Esengül Saltürk, Steve Szabo. Codes over local rings of order 16 and binary codes. Advances in Mathematics of Communications, 2016, 10 (2) : 379-391. doi: 10.3934/amc.2016012

[3]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[4]

Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034

[5]

Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39

[6]

Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253

[7]

Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273

[8]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[9]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[10]

Thomas Westerbäck. Parity check systems of nonlinear codes over finite commutative Frobenius rings. Advances in Mathematics of Communications, 2017, 11 (3) : 409-427. doi: 10.3934/amc.2017035

[11]

Hai Q. Dinh, Hien D. T. Nguyen. On some classes of constacyclic codes over polynomial residue rings. Advances in Mathematics of Communications, 2012, 6 (2) : 175-191. doi: 10.3934/amc.2012.6.175

[12]

Zihui Liu, Dajian Liao. Higher weights and near-MDR codes over chain rings. Advances in Mathematics of Communications, 2018, 12 (4) : 761-772. doi: 10.3934/amc.2018045

[13]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[14]

W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2008, 2 (3) : 309-343. doi: 10.3934/amc.2008.2.309

[15]

W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2007, 1 (4) : 427-459. doi: 10.3934/amc.2007.1.427

[16]

David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131

[17]

Ferruh Özbudak, Patrick Solé. Gilbert-Varshamov type bounds for linear codes over finite chain rings. Advances in Mathematics of Communications, 2007, 1 (1) : 99-109. doi: 10.3934/amc.2007.1.99

[18]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[19]

Fatmanur Gursoy, Irfan Siap, Bahattin Yildiz. Construction of skew cyclic codes over $\mathbb F_q+v\mathbb F_q$. Advances in Mathematics of Communications, 2014, 8 (3) : 313-322. doi: 10.3934/amc.2014.8.313

[20]

Somphong Jitman, San Ling, Ekkasit Sangwisut. On self-dual cyclic codes of length $p^a$ over $GR(p^2,s)$. Advances in Mathematics of Communications, 2016, 10 (2) : 255-273. doi: 10.3934/amc.2016004

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (9)
  • HTML views (29)
  • Cited by (1)

[Back to Top]