May 2017, 11(2): 301-306. doi: 10.3934/amc.2017022

Explicit formulas for monomial involutions over finite fields

1. 

Department of Mathematics, University of Puerto Rico, Río Piedras, Box 70377, S.J., PR 00936-8377

2. 

Department of Computer Science, University of Puerto Rico, Río Piedras, Box 70377, S.J., PR 00936-8377

* Corresponding author

Received  February 2016 Revised  March 2016 Published  May 2017

Permutations of finite fields have important applications in cryptography and coding theory. Involutions are permutations that are its own inverse and are of particular interest because the implementation used for coding can also be used for decoding. We present explicit formulas for all the involutions of ${\mathbb{ F\!}}_q$ that are given by monomials and for their fixed points.

Citation: Francis N. Castro, Carlos Corrada-Bravo, Natalia Pacheco-Tallaj, Ivelisse Rubio. Explicit formulas for monomial involutions over finite fields. Advances in Mathematics of Communications, 2017, 11 (2) : 301-306. doi: 10.3934/amc.2017022
References:
[1]

C. Corrada and I. Rubio, Deterministic interleavers for Turbo codes with random-like performance and simple implementation, in Proc. 3rd Int. Symp. Turbo Codes Related Topics, (2003), 555-558.

[2]

C. Corrada and I. Rubio, Cyclic decomposition of permutations of finite fields obtained using monomials, in Finite Fields and Applications, (2004), 254-261. doi: 10.1007/978-3-540-24633-6_19.

[3]

P. CharpinS. Mesnager and S. Sarkar, On involutions of finite fields, in Int. Symp. Inf. Theory-ISIT, 80 (2016), 379-393.

[4]

P. CharpinS. Mesnager and S. Sarkar, Involutions over the Galois field $\mathbb F_{2^n}$, IEEE Trans. Inf. Theory, 62 (2016), 2266-2276. doi: 10.1109/TIT.2016.2526022.

[5]

A. Sakzad, D. Panario, M. Sadeghi and N. Eshghi, Self-inverse interleavers based on permutation functions for Turbo codes, in 2010 48th Ann. Allerton Conf. Commun. Control Comp., IEEE, 2010, 22–28.

[6]

O. Takeshita, On maximum contention-free interleavers and permutation polynomials over integer rings, IEEE Trans. Inf. Theory, 52 (2006), 1249-1253. doi: 10.1109/TIT.2005.864450.

[7]

Q. Wang, A note on inverses of cyclotomic mapping permutation polynomials over finite fields, Finite Fields Appl., 45 (2017), 422-427. doi: 10.1016/j.ffa.2017.01.006.

show all references

References:
[1]

C. Corrada and I. Rubio, Deterministic interleavers for Turbo codes with random-like performance and simple implementation, in Proc. 3rd Int. Symp. Turbo Codes Related Topics, (2003), 555-558.

[2]

C. Corrada and I. Rubio, Cyclic decomposition of permutations of finite fields obtained using monomials, in Finite Fields and Applications, (2004), 254-261. doi: 10.1007/978-3-540-24633-6_19.

[3]

P. CharpinS. Mesnager and S. Sarkar, On involutions of finite fields, in Int. Symp. Inf. Theory-ISIT, 80 (2016), 379-393.

[4]

P. CharpinS. Mesnager and S. Sarkar, Involutions over the Galois field $\mathbb F_{2^n}$, IEEE Trans. Inf. Theory, 62 (2016), 2266-2276. doi: 10.1109/TIT.2016.2526022.

[5]

A. Sakzad, D. Panario, M. Sadeghi and N. Eshghi, Self-inverse interleavers based on permutation functions for Turbo codes, in 2010 48th Ann. Allerton Conf. Commun. Control Comp., IEEE, 2010, 22–28.

[6]

O. Takeshita, On maximum contention-free interleavers and permutation polynomials over integer rings, IEEE Trans. Inf. Theory, 52 (2006), 1249-1253. doi: 10.1109/TIT.2005.864450.

[7]

Q. Wang, A note on inverses of cyclotomic mapping permutation polynomials over finite fields, Finite Fields Appl., 45 (2017), 422-427. doi: 10.1016/j.ffa.2017.01.006.

[1]

Karsten Keller. Permutations and the Kolmogorov-Sinai entropy. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 891-900. doi: 10.3934/dcds.2012.32.891

[2]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[3]

Florian Luca, Igor E. Shparlinski. On finite fields for pairing based cryptography. Advances in Mathematics of Communications, 2007, 1 (3) : 281-286. doi: 10.3934/amc.2007.1.281

[4]

Haixia Yu. Hilbert transforms along double variable fractional monomials. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1433-1446. doi: 10.3934/cpaa.2019069

[5]

Lizhi Zhang, Congming Li, Wenxiong Chen, Tingzhi Cheng. A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1721-1736. doi: 10.3934/dcds.2016.36.1721

[6]

Solange Mancini, Miriam Manoel, Marco Antonio Teixeira. Divergent diagrams of folds and simultaneous conjugacy of involutions. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 657-674. doi: 10.3934/dcds.2005.12.657

[7]

Konstantinos Drakakis. On the degrees of freedom of Costas permutations and other constraints. Advances in Mathematics of Communications, 2011, 5 (3) : 435-448. doi: 10.3934/amc.2011.5.435

[8]

Diego F. Aranha, Ricardo Dahab, Julio López, Leonardo B. Oliveira. Efficient implementation of elliptic curve cryptography in wireless sensors. Advances in Mathematics of Communications, 2010, 4 (2) : 169-187. doi: 10.3934/amc.2010.4.169

[9]

Andreas Klein. How to say yes, no and maybe with visual cryptography. Advances in Mathematics of Communications, 2008, 2 (3) : 249-259. doi: 10.3934/amc.2008.2.249

[10]

Gerhard Frey. Relations between arithmetic geometry and public key cryptography. Advances in Mathematics of Communications, 2010, 4 (2) : 281-305. doi: 10.3934/amc.2010.4.281

[11]

Gérard Maze, Chris Monico, Joachim Rosenthal. Public key cryptography based on semigroup actions. Advances in Mathematics of Communications, 2007, 1 (4) : 489-507. doi: 10.3934/amc.2007.1.489

[12]

Shaoming Guo. Oscillatory integrals related to Carleson's theorem: fractional monomials. Communications on Pure & Applied Analysis, 2016, 15 (3) : 929-946. doi: 10.3934/cpaa.2016.15.929

[13]

Xi-Nan Ma, Jiang Ye, Yun-Hua Ye. Principal curvature estimates for the level sets of harmonic functions and minimal graphs in $R^3$. Communications on Pure & Applied Analysis, 2011, 10 (1) : 225-243. doi: 10.3934/cpaa.2011.10.225

[14]

Danijela Damjanović, Anatole Katok. Periodic cycle functions and cocycle rigidity for certain partially hyperbolic $\mathbb R^k$ actions. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 985-1005. doi: 10.3934/dcds.2005.13.985

[15]

Anurag Jayswal, Ashish Kumar Prasad, Izhar Ahmad. On minimax fractional programming problems involving generalized $(H_p,r)$-invex functions. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1001-1018. doi: 10.3934/jimo.2014.10.1001

[16]

Nigel P. Byott, Mark Holland, Yiwei Zhang. On the mixing properties of piecewise expanding maps under composition with permutations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3365-3390. doi: 10.3934/dcds.2013.33.3365

[17]

Vincent Astier, Thomas Unger. Galois extensions, positive involutions and an application to unitary space-time coding. Advances in Mathematics of Communications, 2019, 13 (3) : 513-516. doi: 10.3934/amc.2019032

[18]

Peter Müller, Gábor P. Nagy. On the non-existence of sharply transitive sets of permutations in certain finite permutation groups. Advances in Mathematics of Communications, 2011, 5 (2) : 303-308. doi: 10.3934/amc.2011.5.303

[19]

Leon Ehrenpreis. Special functions. Inverse Problems & Imaging, 2010, 4 (4) : 639-647. doi: 10.3934/ipi.2010.4.639

[20]

Sihem Mesnager, Fengrong Zhang, Yong Zhou. On construction of bent functions involving symmetric functions and their duals. Advances in Mathematics of Communications, 2017, 11 (2) : 347-352. doi: 10.3934/amc.2017027

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (9)
  • HTML views (6)
  • Cited by (0)

[Back to Top]