May  2017, 11(2): 389-396. doi: 10.3934/amc.2017033

Some new results on the conjecture on exceptional APN functions and absolutely irreducible polynomials: The gold case

1. 

Department of Mathematics, UPR-Cayey, Puerto Rico (PR), 00736 USA

2. 

Department of Mathematics, UPR-Rio Piedras, San Juan, PR 00931 USA

Received  February 2016 Revised  March 2016 Published  May 2017

An almost perfect nonlinear (APN) function $f:\mathbb{F}_{2^n}\rightarrow\mathbb{F}_{2^n}$ (necessarily polynomial) is called exceptional APN if it is APN on infinitely many extensions of $\mathbb{F}_{2^n}$. Aubry, McGuire and Rodier conjectured that the only exceptional APN functions are the Gold and the Kasami-Welch monomial functions. They established that a polynomial function of odd degree is not exceptional APN provided the degree is not a Gold number $(2^k+1)$ or a Kasami-Welch number $(2^{2k}-2^k+1)$. When the degree of the polynomial function is a Gold number or a Kasami-Welch number, several partial results have been obtained by several authors including us. In this article we address these exceptions. We almost prove the exceptional APN conjecture in the Gold degree case when $\deg{(h(x))}$ is odd. We also show exactly when the corresponding multivariate polynomial $φ(x, y, z)$ is absolutely irreducible. Also, there is only one result known when $f(x)=x^{2^{k}+1} + h(x)$, and $\deg(h(x))$ is even. Here, we extend this result as well, thus making progress in this case that seems more difficult.

Citation: Moises Delgado, Heeralal Janwa. Some new results on the conjecture on exceptional APN functions and absolutely irreducible polynomials: The gold case. Advances in Mathematics of Communications, 2017, 11 (2) : 389-396. doi: 10.3934/amc.2017033
References:
[1]

Y. Aubry, G. McGuire and F. Rodier, A few more functions that are not APN infinitely often, in Finite Fields: Theory and Applications, 2010, 23-31. doi: 10.1090/conm/518/10193.  Google Scholar

[2]

R. D. BakerJ. H. Van Lint and R. M. Wilson, On the preparata and goethals codes, IEEE Trans. Inf. Theory, 29 (1983), 342-345.  doi: 10.1109/TIT.1983.1056675.  Google Scholar

[3]

T. P. BergerA. CanteautP. Charpin and Y. Laigle-Chapuy, On almost perfect nonlinear functions over $F_{2n}$, IEEE Trans. Inf. Theory, 52 (2006), 4160-4170.  doi: 10.1109/TIT.2006.880036.  Google Scholar

[4] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.   Google Scholar
[5]

C. Blondeau and K. Nyberg, Perfect nonlinear functions and cryptography, Finite Fields Appl., 32 (2015), 120-147.  doi: 10.1016/j.ffa.2014.10.007.  Google Scholar

[6]

L. BudaghyanC. Carlet and G. Leander, Constructing new APN functions from known ones, Finite Fields Appl., 15 (2009), 150-159.  doi: 10.1016/j.ffa.2008.10.001.  Google Scholar

[7]

E. Byrne and G. McGuire, Quadratic binomial APN functions and absolutely irreducible polynomials, preprint, arXiv: 0810.4523 Google Scholar

[8]

C. CarletP. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for des-like cryptosystems, Des. Codes Crypt., 15 (1998), 125-156.  doi: 10.1023/A:1008344232130.  Google Scholar

[9]

F. Caullery, Polynomial functions of degree 20 which are APN infinitely often, preprint, arXiv: 1212.4638 Google Scholar

[10]

F. Caullery, A new large class of functions not APN infinitely often, Des. Codes Crypt., 73 (2014), 601-614.  doi: 10.1007/s10623-014-9956-2.  Google Scholar

[11]

M. Delgado and H. Janwa, On the conjecture on APN functions, preprint, arXiv: 1207.5528 Google Scholar

[12]

M. Delgado and H. Janwa, Further results on exceptional APN functions, 2013. Google Scholar

[13]

M. Delgado and H. Janwa, On the conjecture on APN functions and absolute irreducibility of polynomials, Des. Codes Crypt., (2016), 1-11.  doi: 10.1007/s10623-015-0168-1.  Google Scholar

[14]

M. Delgado and H. Janwa, Progress towards the conjecture on APN functions and absolutely irreducible polynomials, preprint, arXiv: 1602.02576 Google Scholar

[15]

Y. EdelG. Kyureghyan and A. Pott, A new APN function which is not equivalent to a power mapping, IEEE Trans. Inf. Theory, 52 (2006), 744-747.  doi: 10.1109/TIT.2005.862128.  Google Scholar

[16]

E. Férard, R. Oyono and F. Rodier, Some more functions that are not APN infinitely often. The case of Gold and Kasami exponents, in Arithmetic, Geometry, Cryptography and Coding Theory, 2012, 27-36. doi: 10.1090/conm/574/11423.  Google Scholar

[17]

W. Fulton, Algebraic Curves: An INTRODUCTION to Algebraic Geometry , 2008.  Google Scholar

[18]

S. R. Ghorpade and G. Lachaud, Étale cohomology, lefschetz theorems and number of points of singular varieties over finite fields, Mosc. Math. J., 2 (2002), 589-631.   Google Scholar

[19]

F. Hernando and G. McGuire, Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions, J. Algebra, 343 (2011), 78-92.  doi: 10.1016/j.jalgebra.2011.06.019.  Google Scholar

[20]

H. JanwaG. Mcguire and R. M. Wilson, Double-error-correcting cyclic codes and absolutely irreducible polynomials over gf (2), J. Algebra, 178 (1995), 665-676.  doi: 10.1006/jabr.1995.1372.  Google Scholar

[21]

H. Janwa and R. M. Wilson, Hyperplane sections of fermat varieties in p 3 in char. 2 and some applications to cyclic codes, in Int. Symp. Appl. Algebra Algebr. Algor. Error-Corr. Codes, Springer, 1993,180-194. doi: 10.1007/3-540-56686-4_43.  Google Scholar

[22]

Y. Niho, Multi-Valued Cross-Correlation Functions between Two Maximal Linear Recursive Sequences, Ph. D thesis, Univ. Southern California, 1972. Google Scholar

[23]

K. Nyberg, Differentially uniform mappings for cryptography, in Worksh. Theory Appl. Crypt. Techn., Springer, 1993, 55-64. doi: 10.1007/3-540-48285-7_6.  Google Scholar

[24]

A. Pott, Almost perfect and planar functions, Des. Codes Crypt., 78 (2016), 141-195.  doi: 10.1007/s10623-015-0151-x.  Google Scholar

[25]

F. Rodier, Borne sur le degré des polynômes presque parfaitement non-linéaires, Contemp. Math., 14 (2009), 169.  doi: 10.1090/conm/487/09531.  Google Scholar

[26]

F. Rodier, Some more functions that are not APN infinitely often. the case of Kasami exponents, preprint, arXiv: 1101.6033 Google Scholar

show all references

References:
[1]

Y. Aubry, G. McGuire and F. Rodier, A few more functions that are not APN infinitely often, in Finite Fields: Theory and Applications, 2010, 23-31. doi: 10.1090/conm/518/10193.  Google Scholar

[2]

R. D. BakerJ. H. Van Lint and R. M. Wilson, On the preparata and goethals codes, IEEE Trans. Inf. Theory, 29 (1983), 342-345.  doi: 10.1109/TIT.1983.1056675.  Google Scholar

[3]

T. P. BergerA. CanteautP. Charpin and Y. Laigle-Chapuy, On almost perfect nonlinear functions over $F_{2n}$, IEEE Trans. Inf. Theory, 52 (2006), 4160-4170.  doi: 10.1109/TIT.2006.880036.  Google Scholar

[4] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.   Google Scholar
[5]

C. Blondeau and K. Nyberg, Perfect nonlinear functions and cryptography, Finite Fields Appl., 32 (2015), 120-147.  doi: 10.1016/j.ffa.2014.10.007.  Google Scholar

[6]

L. BudaghyanC. Carlet and G. Leander, Constructing new APN functions from known ones, Finite Fields Appl., 15 (2009), 150-159.  doi: 10.1016/j.ffa.2008.10.001.  Google Scholar

[7]

E. Byrne and G. McGuire, Quadratic binomial APN functions and absolutely irreducible polynomials, preprint, arXiv: 0810.4523 Google Scholar

[8]

C. CarletP. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for des-like cryptosystems, Des. Codes Crypt., 15 (1998), 125-156.  doi: 10.1023/A:1008344232130.  Google Scholar

[9]

F. Caullery, Polynomial functions of degree 20 which are APN infinitely often, preprint, arXiv: 1212.4638 Google Scholar

[10]

F. Caullery, A new large class of functions not APN infinitely often, Des. Codes Crypt., 73 (2014), 601-614.  doi: 10.1007/s10623-014-9956-2.  Google Scholar

[11]

M. Delgado and H. Janwa, On the conjecture on APN functions, preprint, arXiv: 1207.5528 Google Scholar

[12]

M. Delgado and H. Janwa, Further results on exceptional APN functions, 2013. Google Scholar

[13]

M. Delgado and H. Janwa, On the conjecture on APN functions and absolute irreducibility of polynomials, Des. Codes Crypt., (2016), 1-11.  doi: 10.1007/s10623-015-0168-1.  Google Scholar

[14]

M. Delgado and H. Janwa, Progress towards the conjecture on APN functions and absolutely irreducible polynomials, preprint, arXiv: 1602.02576 Google Scholar

[15]

Y. EdelG. Kyureghyan and A. Pott, A new APN function which is not equivalent to a power mapping, IEEE Trans. Inf. Theory, 52 (2006), 744-747.  doi: 10.1109/TIT.2005.862128.  Google Scholar

[16]

E. Férard, R. Oyono and F. Rodier, Some more functions that are not APN infinitely often. The case of Gold and Kasami exponents, in Arithmetic, Geometry, Cryptography and Coding Theory, 2012, 27-36. doi: 10.1090/conm/574/11423.  Google Scholar

[17]

W. Fulton, Algebraic Curves: An INTRODUCTION to Algebraic Geometry , 2008.  Google Scholar

[18]

S. R. Ghorpade and G. Lachaud, Étale cohomology, lefschetz theorems and number of points of singular varieties over finite fields, Mosc. Math. J., 2 (2002), 589-631.   Google Scholar

[19]

F. Hernando and G. McGuire, Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions, J. Algebra, 343 (2011), 78-92.  doi: 10.1016/j.jalgebra.2011.06.019.  Google Scholar

[20]

H. JanwaG. Mcguire and R. M. Wilson, Double-error-correcting cyclic codes and absolutely irreducible polynomials over gf (2), J. Algebra, 178 (1995), 665-676.  doi: 10.1006/jabr.1995.1372.  Google Scholar

[21]

H. Janwa and R. M. Wilson, Hyperplane sections of fermat varieties in p 3 in char. 2 and some applications to cyclic codes, in Int. Symp. Appl. Algebra Algebr. Algor. Error-Corr. Codes, Springer, 1993,180-194. doi: 10.1007/3-540-56686-4_43.  Google Scholar

[22]

Y. Niho, Multi-Valued Cross-Correlation Functions between Two Maximal Linear Recursive Sequences, Ph. D thesis, Univ. Southern California, 1972. Google Scholar

[23]

K. Nyberg, Differentially uniform mappings for cryptography, in Worksh. Theory Appl. Crypt. Techn., Springer, 1993, 55-64. doi: 10.1007/3-540-48285-7_6.  Google Scholar

[24]

A. Pott, Almost perfect and planar functions, Des. Codes Crypt., 78 (2016), 141-195.  doi: 10.1007/s10623-015-0151-x.  Google Scholar

[25]

F. Rodier, Borne sur le degré des polynômes presque parfaitement non-linéaires, Contemp. Math., 14 (2009), 169.  doi: 10.1090/conm/487/09531.  Google Scholar

[26]

F. Rodier, Some more functions that are not APN infinitely often. the case of Kasami exponents, preprint, arXiv: 1101.6033 Google Scholar

[1]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[2]

Zemer Kosloff, Terry Soo. The orbital equivalence of Bernoulli actions and their Sinai factors. Journal of Modern Dynamics, 2021, 17: 145-182. doi: 10.3934/jmd.2021005

[3]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[4]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[5]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[6]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[7]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[8]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[9]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[10]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[11]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[12]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[13]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[14]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[15]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[16]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[17]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[18]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[19]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[20]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (126)
  • HTML views (60)
  • Cited by (0)

Other articles
by authors

[Back to Top]