2017, 11(4): 671-691. doi: 10.3934/amc.2017049

A new nonbinary sequence family with low correlation and large size

1. 

School of Mathematical Sciences, Huaiyin Normal University, Huaian 223300, China

2. 

School of Mathematics & Computation Science, Anqing Normal University, Anqing 246133, China

3. 

School of Mathematics and Statistics, & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan 430079, China

4. 

School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China

* Corresponding author

Received  May 2015 Revised  February 2016 Published  November 2017

Let $p$ be an odd prime, $n≥q3$ and $k$ positive integers with $e=\gcd(n,k)$. In this paper, a new family $\mathcal{S}$ of $p$-ary sequences with period $N=p^n-1$ is proposed. The sequences in $\mathcal{S}$ are constructed by adding a $p$-ary sequence to its two decimated sequences with different phase shifts. The correlation distribution among sequences in $\mathcal{S}$ is completely determined. It is shown that the maximum magnitude of nontrivial correlations of $\mathcal{S}$ is upper bounded by $p^e\sqrt{N+1}+1$, and the family size of $\mathcal{S}$ is $N^2$. Our sequence family has a large family size and low correlation.

Citation: Hua Liang, Wenbing Chen, Jinquan Luo, Yuansheng Tang. A new nonbinary sequence family with low correlation and large size. Advances in Mathematics of Communications, 2017, 11 (4) : 671-691. doi: 10.3934/amc.2017049
References:
[1]

S. T. ChoiT. LimJ. S. No and H. Chung, On the cross-correlation of a $p$-ary m-sequence of period $p^{2m}-1$ and its decimated sequence by $\frac{(p^{m}+1)^{2}}{2(p+1)}$, IEEE Trans. Inf. Theory, 58 (2012), 1873-1879. doi: 10.1109/TIT.2011.2177573.

[2]

G. Gong, New designs for signal sets with low cross correlation, balance property, and large linear span: GF(p) case, IEEE Trans. Inf. Theory, 48 (2002), 2847-2867. doi: 10.1109/TIT.2002.804044.

[3]

T. Helleseth, Some results about the cross-correlation function between two maximal-linear sequence, Discrete Math., 16 (1976), 209-232. doi: 10.1016/0012-365X(76)90100-X.

[4]

T. Kasami, Weight distribution of Bose-Chaudhuri-Hocquenghem codes, in Combinatorial Mathematics and Its Applications, Chapel Hill, NC: Univ. North Carolina Press, 1969,335-357.

[5]

T. Kasami, Weight Distribution Formular for Some Class of Cyclic Codes, Coordinated Science Lab., Univ. Illinois at Urbana-Champaign, Urbana, IL, Tech. Rep. R-285(AD 637524), 1966.

[6]

J. Y. KimS. T. ChoiJ. S. No and H. Chung, A new family of $p$-ary sequences of period $(p^n-1)/2$ with low correlation, IEEE Trans. Inf. Theory, 57 (2011), 3825-3830. doi: 10.1109/TIT.2011.2133730.

[7]

D. S. KimH. J. Chae and H. Y. Song, A generalizaton of the family of $p$-ary decimated sequences with low correlation, IEEE Trans. Inf. Theory, 57 (2011), 7614-7617. doi: 10.1109/TIT.2011.2159576.

[8]

P. V. Kumar and O. Moreno, Prime-phase sequences with periodic correlation properites better than binary sequences, IEEE Trans. Inf. Theory, 37 (1991), 603-616.

[9]

H. Liang and Y. Tang, The cross correlation distribution of a $p$-ary $m$-sequence of period $p^m-1$ and its decimated sequences by $(p^k+1)(p^m+1)/4$, Finite Fields Appl., 31 (2015), 137-161. doi: 10.1016/j.ffa.2014.10.005.

[10]

R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its Applications, Addison-Wesley, Reading, MA, 1983.

[11]

S. C. Liu and J. J. Komo, Nonbinary Kasami sequences over $GF(p)$, IEEE Trans. Inf. Theory, 38 (1992), 1409-1412. doi: 10.1109/18.144728.

[12]

J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344. doi: 10.1109/TIT.2008.2006424.

[13]

J. Luo and K. Feng, Cyclic codes and sequences from generalized Coulter-Matthews function, IEEE Trans. Inf. Theory, 54 (2008), 5345-5353. doi: 10.1109/TIT.2008.2006394.

[14]

J. Luo, T. Helleseth and A. Kholosha, Two nonbinary sequences with six-valued cross correlation, in Proceeding of IWSDA'11, 2011, 44-47. doi: 10.1109/IWSDA.2011.6159435.

[15]

E. N. Muller, On the crosscorrelation of sequences over $GF(p)$ with short periods, IEEE Trans. Inf. Theory, 45 (1999), 289-295. doi: 10.1109/18.746820.

[16]

G. J. NessT. Helleseth and A. Kholosha, On the correlation distribution of the Coulter-Matthews decimation, IEEE Trans. Inf. Theory, 52 (2006), 2241-2247. doi: 10.1109/TIT.2006.872857.

[17]

E. Y. SeoY. S. KimJ. S. No and D. J. Shin, Cross-correlation distribution of p-ary m-sequence of period $p^{4k}-1$ and its decimated sequences by $(\frac{p^{2k}+1}{2})^{2}$, IEEE Trans. Inf. Theory, 54 (2008), 3140-3149. doi: 10.1109/TIT.2008.924694.

[18]

Y. SunZ. WangH. Li and T. Yan, The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$, Adv. Math. Commun., 7 (2013), 409-424. doi: 10.3934/amc.2013.7.409.

[19]

Y. XiaX. Zeng and L. Hu, Further crosscorrelation properties of sequences with the decimation factor $d=\frac{p^n+1}{p+1}-\frac{p^n-1}{2}$, Appl. Algebra Eng. Commun. Comput., 21 (2010), 329-342. doi: 10.1007/s00200-010-0128-y.

[20]

Y. Xia and S. Chen, A new family of $p$-ary sequences with low correlation constructed from decimated sequences, IEEE Trans. Inf. Theory, 58 (2012), 6037-6046. doi: 10.1109/TIT.2012.2201132.

[21]

N. Y. Yu and G. Gong, A new binary sequence family with low correlation and large size, IEEE Trans. Inf. Theory, 52 (2006), 1624-1636. doi: 10.1109/TIT.2006.871062.

show all references

References:
[1]

S. T. ChoiT. LimJ. S. No and H. Chung, On the cross-correlation of a $p$-ary m-sequence of period $p^{2m}-1$ and its decimated sequence by $\frac{(p^{m}+1)^{2}}{2(p+1)}$, IEEE Trans. Inf. Theory, 58 (2012), 1873-1879. doi: 10.1109/TIT.2011.2177573.

[2]

G. Gong, New designs for signal sets with low cross correlation, balance property, and large linear span: GF(p) case, IEEE Trans. Inf. Theory, 48 (2002), 2847-2867. doi: 10.1109/TIT.2002.804044.

[3]

T. Helleseth, Some results about the cross-correlation function between two maximal-linear sequence, Discrete Math., 16 (1976), 209-232. doi: 10.1016/0012-365X(76)90100-X.

[4]

T. Kasami, Weight distribution of Bose-Chaudhuri-Hocquenghem codes, in Combinatorial Mathematics and Its Applications, Chapel Hill, NC: Univ. North Carolina Press, 1969,335-357.

[5]

T. Kasami, Weight Distribution Formular for Some Class of Cyclic Codes, Coordinated Science Lab., Univ. Illinois at Urbana-Champaign, Urbana, IL, Tech. Rep. R-285(AD 637524), 1966.

[6]

J. Y. KimS. T. ChoiJ. S. No and H. Chung, A new family of $p$-ary sequences of period $(p^n-1)/2$ with low correlation, IEEE Trans. Inf. Theory, 57 (2011), 3825-3830. doi: 10.1109/TIT.2011.2133730.

[7]

D. S. KimH. J. Chae and H. Y. Song, A generalizaton of the family of $p$-ary decimated sequences with low correlation, IEEE Trans. Inf. Theory, 57 (2011), 7614-7617. doi: 10.1109/TIT.2011.2159576.

[8]

P. V. Kumar and O. Moreno, Prime-phase sequences with periodic correlation properites better than binary sequences, IEEE Trans. Inf. Theory, 37 (1991), 603-616.

[9]

H. Liang and Y. Tang, The cross correlation distribution of a $p$-ary $m$-sequence of period $p^m-1$ and its decimated sequences by $(p^k+1)(p^m+1)/4$, Finite Fields Appl., 31 (2015), 137-161. doi: 10.1016/j.ffa.2014.10.005.

[10]

R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its Applications, Addison-Wesley, Reading, MA, 1983.

[11]

S. C. Liu and J. J. Komo, Nonbinary Kasami sequences over $GF(p)$, IEEE Trans. Inf. Theory, 38 (1992), 1409-1412. doi: 10.1109/18.144728.

[12]

J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344. doi: 10.1109/TIT.2008.2006424.

[13]

J. Luo and K. Feng, Cyclic codes and sequences from generalized Coulter-Matthews function, IEEE Trans. Inf. Theory, 54 (2008), 5345-5353. doi: 10.1109/TIT.2008.2006394.

[14]

J. Luo, T. Helleseth and A. Kholosha, Two nonbinary sequences with six-valued cross correlation, in Proceeding of IWSDA'11, 2011, 44-47. doi: 10.1109/IWSDA.2011.6159435.

[15]

E. N. Muller, On the crosscorrelation of sequences over $GF(p)$ with short periods, IEEE Trans. Inf. Theory, 45 (1999), 289-295. doi: 10.1109/18.746820.

[16]

G. J. NessT. Helleseth and A. Kholosha, On the correlation distribution of the Coulter-Matthews decimation, IEEE Trans. Inf. Theory, 52 (2006), 2241-2247. doi: 10.1109/TIT.2006.872857.

[17]

E. Y. SeoY. S. KimJ. S. No and D. J. Shin, Cross-correlation distribution of p-ary m-sequence of period $p^{4k}-1$ and its decimated sequences by $(\frac{p^{2k}+1}{2})^{2}$, IEEE Trans. Inf. Theory, 54 (2008), 3140-3149. doi: 10.1109/TIT.2008.924694.

[18]

Y. SunZ. WangH. Li and T. Yan, The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$, Adv. Math. Commun., 7 (2013), 409-424. doi: 10.3934/amc.2013.7.409.

[19]

Y. XiaX. Zeng and L. Hu, Further crosscorrelation properties of sequences with the decimation factor $d=\frac{p^n+1}{p+1}-\frac{p^n-1}{2}$, Appl. Algebra Eng. Commun. Comput., 21 (2010), 329-342. doi: 10.1007/s00200-010-0128-y.

[20]

Y. Xia and S. Chen, A new family of $p$-ary sequences with low correlation constructed from decimated sequences, IEEE Trans. Inf. Theory, 58 (2012), 6037-6046. doi: 10.1109/TIT.2012.2201132.

[21]

N. Y. Yu and G. Gong, A new binary sequence family with low correlation and large size, IEEE Trans. Inf. Theory, 52 (2006), 1624-1636. doi: 10.1109/TIT.2006.871062.

[1]

Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409

[2]

Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050

[3]

Wenbing Chen, Jinquan Luo, Yuansheng Tang, Quanquan Liu. Some new results on cross correlation of $p$-ary $m$-sequence and its decimated sequence. Advances in Mathematics of Communications, 2015, 9 (3) : 375-390. doi: 10.3934/amc.2015.9.375

[4]

Xiaohui Liu, Jinhua Wang, Dianhua Wu. Two new classes of binary sequence pairs with three-level cross-correlation. Advances in Mathematics of Communications, 2015, 9 (1) : 117-128. doi: 10.3934/amc.2015.9.117

[5]

Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55

[6]

Zilong Wang, Guang Gong. Correlation of binary sequence families derived from the multiplicative characters of finite fields. Advances in Mathematics of Communications, 2013, 7 (4) : 475-484. doi: 10.3934/amc.2013.7.475

[7]

Samuel T. Blake, Thomas E. Hall, Andrew Z. Tirkel. Arrays over roots of unity with perfect autocorrelation and good ZCZ cross-correlation. Advances in Mathematics of Communications, 2013, 7 (3) : 231-242. doi: 10.3934/amc.2013.7.231

[8]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[9]

Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9

[10]

Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015

[11]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[12]

Walter Briec, Bernardin Solonandrasana. Some remarks on a successive projection sequence. Journal of Industrial & Management Optimization, 2006, 2 (4) : 451-466. doi: 10.3934/jimo.2006.2.451

[13]

Kai-Uwe Schmidt, Jonathan Jedwab, Matthew G. Parker. Two binary sequence families with large merit factor. Advances in Mathematics of Communications, 2009, 3 (2) : 135-156. doi: 10.3934/amc.2009.3.135

[14]

Matthew Macauley, Henning S. Mortveit. Update sequence stability in graph dynamical systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1533-1541. doi: 10.3934/dcdss.2011.4.1533

[15]

Wenjun Xia, Jinzhi Lei. Formulation of the protein synthesis rate with sequence information. Mathematical Biosciences & Engineering, 2018, 15 (2) : 507-522. doi: 10.3934/mbe.2018023

[16]

Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857

[17]

Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim. New design of quaternary LCZ and ZCZ sequence set from binary LCZ and ZCZ sequence set. Advances in Mathematics of Communications, 2009, 3 (2) : 115-124. doi: 10.3934/amc.2009.3.115

[18]

Jana Majerová. Correlation integral and determinism for a family of $2^\infty$ maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5067-5096. doi: 10.3934/dcds.2016020

[19]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps . Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

[20]

Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim, Dae-Woon Lim. New construction methods of quaternary periodic complementary sequence sets. Advances in Mathematics of Communications, 2010, 4 (1) : 61-68. doi: 10.3934/amc.2010.4.61

2016 Impact Factor: 0.8

Metrics

  • PDF downloads (28)
  • HTML views (102)
  • Cited by (0)

[Back to Top]