February  2019, 13(1): 89-99. doi: 10.3934/amc.2019005

Optimal information ratio of secret sharing schemes on Dutch windmill graphs

Applied Mathematics and Cryptography Department, Malek Ashtar university of technology, Isfahan, Iran

* Corresponding author: Bagher Bagherpour

Received  April 2018 Revised  July 2018 Published  December 2018

One of the basic problems in secret sharing is to determine the exact values of the information ratio of the access structures. This task is important from the practical point of view, since the security of any system degrades as the amount of secret information increases.

A Dutch windmill graph consists of the edge-disjoint cycles such that all of them meet in one vertex. In this paper, we determine the exact information ratio of secret sharing schemes on the Dutch windmill graphs. Furthermore, we determine the exact ratio of some related graph families.

Citation: Bagher Bagherpour, Shahrooz Janbaz, Ali Zaghian. Optimal information ratio of secret sharing schemes on Dutch windmill graphs. Advances in Mathematics of Communications, 2019, 13 (1) : 89-99. doi: 10.3934/amc.2019005
References:
[1]

J. C. Benaloh and J. Leichter, Generalized secret sharing and monotone functions, Advances in Cryptology-Crpto 88 Proceedings, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 403 (1990), 27-35. doi: 10.1007/0-387-34799-2_3.

[2]

G. R. Blakley, Safeguarding Cryptographic Keys, in AFIPS Conference Proceedings, 48 (1979), 313-317.

[3]

C. BlundoA. De SantisD. R. Stinson and U. Vaccaro, Graph decompositions and secret sharing schemes, Advances in Cryptology-Proceeding of Eurocrypt 92, Lecture Notes in Comput. Sci, 658 (1993), 1-24. doi: 10.1007/3-540-47555-9_1.

[4]

C. BlundoA. De Santis and U. Vaccaro, Tight bounds on the information rate of secret sharing schemes, Designs Codes and Cryptography, 11 (1997), 107-122. doi: 10.1023/A:1008216403325.

[5]

C. BlundoA. De SantisL. Gargano and U. Vaccaro, On the information rate of secret sharing schemes, Theoretical Computer Science, 154 (1996), 283-306. doi: 10.1016/0304-3975(95)00065-8.

[6]

E. F. Brickell and D. M. Davenport, On the classification of ideal secret sharing schemes, Journal of Cryptology, 4 (1993), 157-167.

[7]

R. M. CapocelliA. De SantisL. Gargano and U. Vaccaro, On the size of shares for secret sharing schemes, Journal of Cryptology, 6 (1993), 157-169.

[8]

T. M. Cover and J.A. Thomas, Elements of Information Theory, 2$^{nd}$ edition, John Wiley and Sons, Inc., Hoboken, New Jersey, 2006.

[9]

L. Csirmas, The size of a share must be large, Journal of Cryptology, 10 (1997), 223-231. doi: 10.1007/s001459900029.

[10]

L. Csirmas, An impossibility result on graph secret sharing, Designs Codes and Cryptography, 53 (2009), 195-209. doi: 10.1007/s10623-009-9304-0.

[11]

L. Csirmaz and G. Tardos, Optimal information rate of secret sharing schemes on trees, IEEE Transaction on Information Theory, 59 (2013), 2527-2530. doi: 10.1109/TIT.2012.2236958.

[12]

L. Csirmaz and P. Ligeti, On an infinite family of graphs with information ratio $1-\frac{2}{k}$, Computing, 85 (2009), 127-136. doi: 10.1007/s00607-009-0039-6.

[13]

P. ErdősA. Rényi and V. T. Sós, On a problem of graph theory, Studia Sci. Math. Hungar, 1 (1966), 215-235.

[14]

R. G. Gallager, Information Theory and Reliable Communications, John Wiley, New York, 1986.

[15]

M. ItoA. Saito and T. Nishizeki, Secret sharing scheme realizing general access structure, Proc. IEEE Globecorn, Tokyo, 87 (1987), 99-102.

[16]

M. ItoA. Saito and T. Nishizeki, Multiple assignment scheme for sharing secret, Journal of Cryptology, 6 (1993), 15-20. doi: 10.1007/BF02620229.

[17]

W. Jackson and Keith M. Martin, Perfect secret sharing schemes on five participants, Designs. Codes and Cryptography, 9 (1996), 267-286. doi: 10.1007/BF00129769.

[18]

C. Padró and G. Sáez, Secret sharing with bipartite access structure, IEEE Transaction on Information Theory, 46 (2000), 2596-2604. doi: 10.1109/18.887867.

[19]

C. Padró and L. Vazquez, Finding lower bounds on the complexity of secret sharing schemes by linear programming, Ninth Latin American Theoretical Informatics Symposium, LATIN 2010, Lecture Notes in Computer Science, 6034 (2010), 344-355. doi: 10.1007/978-3-642-12200-2_31.

[20]

A. Shamir, How to share a secret, Communication of the ACM, 22 (1979), 612-613. doi: 10.1145/359168.359176.

[21]

D. R. Stinson, Decomposition constructions for secret sharing schemes, IEEE Transaction on Information Theory, 40 (1994), 118-125. doi: 10.1109/18.272461.

[22]

D. R. Stinson, An explication of secret sharing schemes, Designs Codes and Cryptography, 2 (1992), 357-390. doi: 10.1007/BF00125203.

[23]

H. M. Sun and B. L. Chen, Weighted decomposition construction for perfect secret sharing schemes, Compute Math. Appl., 43 (2002), 877-887. doi: 10.1016/S0898-1221(01)00328-5.

[24]

M. Van dijk, On the information rate of perfect secret sharing schemes, Designs, Codes and Cryptography, 6 (1995), 143-169. doi: 10.1007/BF01398012.

show all references

References:
[1]

J. C. Benaloh and J. Leichter, Generalized secret sharing and monotone functions, Advances in Cryptology-Crpto 88 Proceedings, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 403 (1990), 27-35. doi: 10.1007/0-387-34799-2_3.

[2]

G. R. Blakley, Safeguarding Cryptographic Keys, in AFIPS Conference Proceedings, 48 (1979), 313-317.

[3]

C. BlundoA. De SantisD. R. Stinson and U. Vaccaro, Graph decompositions and secret sharing schemes, Advances in Cryptology-Proceeding of Eurocrypt 92, Lecture Notes in Comput. Sci, 658 (1993), 1-24. doi: 10.1007/3-540-47555-9_1.

[4]

C. BlundoA. De Santis and U. Vaccaro, Tight bounds on the information rate of secret sharing schemes, Designs Codes and Cryptography, 11 (1997), 107-122. doi: 10.1023/A:1008216403325.

[5]

C. BlundoA. De SantisL. Gargano and U. Vaccaro, On the information rate of secret sharing schemes, Theoretical Computer Science, 154 (1996), 283-306. doi: 10.1016/0304-3975(95)00065-8.

[6]

E. F. Brickell and D. M. Davenport, On the classification of ideal secret sharing schemes, Journal of Cryptology, 4 (1993), 157-167.

[7]

R. M. CapocelliA. De SantisL. Gargano and U. Vaccaro, On the size of shares for secret sharing schemes, Journal of Cryptology, 6 (1993), 157-169.

[8]

T. M. Cover and J.A. Thomas, Elements of Information Theory, 2$^{nd}$ edition, John Wiley and Sons, Inc., Hoboken, New Jersey, 2006.

[9]

L. Csirmas, The size of a share must be large, Journal of Cryptology, 10 (1997), 223-231. doi: 10.1007/s001459900029.

[10]

L. Csirmas, An impossibility result on graph secret sharing, Designs Codes and Cryptography, 53 (2009), 195-209. doi: 10.1007/s10623-009-9304-0.

[11]

L. Csirmaz and G. Tardos, Optimal information rate of secret sharing schemes on trees, IEEE Transaction on Information Theory, 59 (2013), 2527-2530. doi: 10.1109/TIT.2012.2236958.

[12]

L. Csirmaz and P. Ligeti, On an infinite family of graphs with information ratio $1-\frac{2}{k}$, Computing, 85 (2009), 127-136. doi: 10.1007/s00607-009-0039-6.

[13]

P. ErdősA. Rényi and V. T. Sós, On a problem of graph theory, Studia Sci. Math. Hungar, 1 (1966), 215-235.

[14]

R. G. Gallager, Information Theory and Reliable Communications, John Wiley, New York, 1986.

[15]

M. ItoA. Saito and T. Nishizeki, Secret sharing scheme realizing general access structure, Proc. IEEE Globecorn, Tokyo, 87 (1987), 99-102.

[16]

M. ItoA. Saito and T. Nishizeki, Multiple assignment scheme for sharing secret, Journal of Cryptology, 6 (1993), 15-20. doi: 10.1007/BF02620229.

[17]

W. Jackson and Keith M. Martin, Perfect secret sharing schemes on five participants, Designs. Codes and Cryptography, 9 (1996), 267-286. doi: 10.1007/BF00129769.

[18]

C. Padró and G. Sáez, Secret sharing with bipartite access structure, IEEE Transaction on Information Theory, 46 (2000), 2596-2604. doi: 10.1109/18.887867.

[19]

C. Padró and L. Vazquez, Finding lower bounds on the complexity of secret sharing schemes by linear programming, Ninth Latin American Theoretical Informatics Symposium, LATIN 2010, Lecture Notes in Computer Science, 6034 (2010), 344-355. doi: 10.1007/978-3-642-12200-2_31.

[20]

A. Shamir, How to share a secret, Communication of the ACM, 22 (1979), 612-613. doi: 10.1145/359168.359176.

[21]

D. R. Stinson, Decomposition constructions for secret sharing schemes, IEEE Transaction on Information Theory, 40 (1994), 118-125. doi: 10.1109/18.272461.

[22]

D. R. Stinson, An explication of secret sharing schemes, Designs Codes and Cryptography, 2 (1992), 357-390. doi: 10.1007/BF00125203.

[23]

H. M. Sun and B. L. Chen, Weighted decomposition construction for perfect secret sharing schemes, Compute Math. Appl., 43 (2002), 877-887. doi: 10.1016/S0898-1221(01)00328-5.

[24]

M. Van dijk, On the information rate of perfect secret sharing schemes, Designs, Codes and Cryptography, 6 (1995), 143-169. doi: 10.1007/BF01398012.

Figure 1.  The Dutch windmill graph $D_4^{(k)}$ with predefined labelling
Figure 2.  The friendship graph $F_k$ with predefined labelling
Table 1.  Subgraphs of the graph $C(\mathcal{F}_k)$
$G$ $V$
$S_1(V)$ $\{v_c, v^{1}_2, v^{1}_{n_1}, \ldots, v^{k}_{2}, v^{k}_{n_k}\}$ $\Pi_1 =\{(2k-1) \times S_{1}(V)\}$
$S^{i}_{1}(V)$
$i\in \{1, \ldots, k\}$
$\{v_c, v^{i}_2, v^{i}_{3}\}$ $\Pi_2 =\{1 \times S^{i}_1(V): i\in \{1, \ldots, k\}\}$
$S^{i}_{2}(V)$
$i\in \{1, \ldots, k\}$
$\{v_c, v^{i}_{n_i}, v^{i}_{n_i-1}\}$ $\Pi_3 =\{1 \times S^{i}_{2}(V): i\in \{1, \ldots, k\}\}$
$P^{i}_1(V)$
$i\in \{1, \ldots, k\}$
$\{v^{i}_2, v^{i}_3, \ldots, v^{i}_{n_i}\}$ $\Pi_4 =\{(2k-1) \times P^{i}_1(V): i \in \{1, \ldots, k\}\}$
$P^{i}_2(V)$
$i\in \{1, \ldots, k\} $
$\{v^{i}_3, v^{i}_{4}, \ldots, v^{i}_{n_i-1}\}$ $\Pi_5 =\{1 \times P^{i}_2(V): i \in \{1, \ldots, k\}\}$
$G$ $V$
$S_1(V)$ $\{v_c, v^{1}_2, v^{1}_{n_1}, \ldots, v^{k}_{2}, v^{k}_{n_k}\}$ $\Pi_1 =\{(2k-1) \times S_{1}(V)\}$
$S^{i}_{1}(V)$
$i\in \{1, \ldots, k\}$
$\{v_c, v^{i}_2, v^{i}_{3}\}$ $\Pi_2 =\{1 \times S^{i}_1(V): i\in \{1, \ldots, k\}\}$
$S^{i}_{2}(V)$
$i\in \{1, \ldots, k\}$
$\{v_c, v^{i}_{n_i}, v^{i}_{n_i-1}\}$ $\Pi_3 =\{1 \times S^{i}_{2}(V): i\in \{1, \ldots, k\}\}$
$P^{i}_1(V)$
$i\in \{1, \ldots, k\}$
$\{v^{i}_2, v^{i}_3, \ldots, v^{i}_{n_i}\}$ $\Pi_4 =\{(2k-1) \times P^{i}_1(V): i \in \{1, \ldots, k\}\}$
$P^{i}_2(V)$
$i\in \{1, \ldots, k\} $
$\{v^{i}_3, v^{i}_{4}, \ldots, v^{i}_{n_i-1}\}$ $\Pi_5 =\{1 \times P^{i}_2(V): i \in \{1, \ldots, k\}\}$
Table 2.  Subgraphs of the graph $C'(\mathcal{F}_k)$
$G$ $V$
$S_1(V)$ $\{v_c, v', v^{1}_2, v^{1}_{n_1}, \ldots, v^{k}_{2}, v^{k}_{n_k}\}$ $\Pi_1 =\{(2k) \times S_{1}(V)\}$
$S^{i}_{1}(V)$
$i\in \{1, \ldots, k\}$
$\{v_c, v^{i}_2, v^{i}_{3}\}$ $\Pi_2 =\{1 \times S^{i}_1(V): i\in \{1, \ldots, k\}\}$
$S^{i}_{2}(V)$
$i\in \{1, \ldots, k\}$
$\{v_c, v^{i}_{n_i}, v^{i}_{n_i-1}\}$ $\Pi_3 =\{1 \times S^{i}_{2}(V): i\in \{1, \ldots, k\}\}$
$S'(V)$ $\{v_c, v' \}$ $\Pi_4 =\{1 \times S'(V) \}$
$P^{i}_1(V)$
$i\in \{1, \ldots, k\}$
$\{v^{i}_2, v^{i}_3, \ldots, v^{i}_{n_i}\}$ $\Pi_5 =\{2k \times P^{i}_1(V): i \in \{1, \ldots, k\}\}$
$P^{i}_2(V)$
$i\in \{1, \ldots, k\} $
$\{v^{i}_3, v^{i}_{4}, \ldots, v^{i}_{n_i-1}\}$ $\Pi_6 =\{1 \times P^{i}_2(V): i \in \{1, \ldots, k\}\}$
$G$ $V$
$S_1(V)$ $\{v_c, v', v^{1}_2, v^{1}_{n_1}, \ldots, v^{k}_{2}, v^{k}_{n_k}\}$ $\Pi_1 =\{(2k) \times S_{1}(V)\}$
$S^{i}_{1}(V)$
$i\in \{1, \ldots, k\}$
$\{v_c, v^{i}_2, v^{i}_{3}\}$ $\Pi_2 =\{1 \times S^{i}_1(V): i\in \{1, \ldots, k\}\}$
$S^{i}_{2}(V)$
$i\in \{1, \ldots, k\}$
$\{v_c, v^{i}_{n_i}, v^{i}_{n_i-1}\}$ $\Pi_3 =\{1 \times S^{i}_{2}(V): i\in \{1, \ldots, k\}\}$
$S'(V)$ $\{v_c, v' \}$ $\Pi_4 =\{1 \times S'(V) \}$
$P^{i}_1(V)$
$i\in \{1, \ldots, k\}$
$\{v^{i}_2, v^{i}_3, \ldots, v^{i}_{n_i}\}$ $\Pi_5 =\{2k \times P^{i}_1(V): i \in \{1, \ldots, k\}\}$
$P^{i}_2(V)$
$i\in \{1, \ldots, k\} $
$\{v^{i}_3, v^{i}_{4}, \ldots, v^{i}_{n_i-1}\}$ $\Pi_6 =\{1 \times P^{i}_2(V): i \in \{1, \ldots, k\}\}$
Table 3.  Subgraphs of the graph $D^{(k)}_{4}$
$G$ $V(G)$ $E(G)$
$G_1$ $\{v_c, v_1, v_3, \ldots, v_{3k-2}, v_{3k}\}$ $\{v_c v_j , v_c v_{j+2}: $ $ j \in \{1, 4, \ldots, 3k-2 \}\}$
$G_{1+(i+2)/3}$
$i\in \{1, 4, \ldots 3k-2 \}$
$\{v_c, v_i, v_{i+1}, v_{i+2}\}$ $\{ v_c v_i, v_c v_{i+2}, v_i v_{i+1}, v_{i+1} v_{i+2}\}$
$G_{k+1+(i+2)/3}$
$i\in \{1, 4, \ldots, 3k-2 \}$
$\{v_i, v_{i+1}, v_{i+2}\}$ $\{ v_i v_{i+1}, v_{i+1} v_{i+2}\}$
$G$ $V(G)$ $E(G)$
$G_1$ $\{v_c, v_1, v_3, \ldots, v_{3k-2}, v_{3k}\}$ $\{v_c v_j , v_c v_{j+2}: $ $ j \in \{1, 4, \ldots, 3k-2 \}\}$
$G_{1+(i+2)/3}$
$i\in \{1, 4, \ldots 3k-2 \}$
$\{v_c, v_i, v_{i+1}, v_{i+2}\}$ $\{ v_c v_i, v_c v_{i+2}, v_i v_{i+1}, v_{i+1} v_{i+2}\}$
$G_{k+1+(i+2)/3}$
$i\in \{1, 4, \ldots, 3k-2 \}$
$\{v_i, v_{i+1}, v_{i+2}\}$ $\{ v_i v_{i+1}, v_{i+1} v_{i+2}\}$
Table 4.  Subgraphs of the graph $D'^{(k)}_{4}$
$G$ $V(G)$ $E(G)$
$G_1$ $\{v_c, v_1, v_3, \ldots, v_{3k-2}, v_{3k},$ $v'\}$ $\{v_c v_j , v_c v_{j+2}, v_c v': j\in\{1, 4, $ $ \ldots, 3k-2\}\}$
$G_{1+(i+2)/3}$
$i\in \{1, 4, \ldots 3k-2 \}$
$\{v_c, v_i, v_{i+1}, v_{i+2}\}$ $\{ v_c v_i, v_c v_{i+2}, v_i v_{i+1}, v_{i+1} v_{i+2}\}$
$G_{k+2}$ $\{v_c, v' \}$ $\{v_c v' \}$
$G_{k+2+(i+2)/3}$
$i\in \{1, 4, \ldots, 3k-2 \}$
$\{v_i, v_{i+1}, v_{i+2}\}$ $\{ v_i v_{i+1}, v_{i+1} v_{i+2}\}$
$G$ $V(G)$ $E(G)$
$G_1$ $\{v_c, v_1, v_3, \ldots, v_{3k-2}, v_{3k},$ $v'\}$ $\{v_c v_j , v_c v_{j+2}, v_c v': j\in\{1, 4, $ $ \ldots, 3k-2\}\}$
$G_{1+(i+2)/3}$
$i\in \{1, 4, \ldots 3k-2 \}$
$\{v_c, v_i, v_{i+1}, v_{i+2}\}$ $\{ v_c v_i, v_c v_{i+2}, v_i v_{i+1}, v_{i+1} v_{i+2}\}$
$G_{k+2}$ $\{v_c, v' \}$ $\{v_c v' \}$
$G_{k+2+(i+2)/3}$
$i\in \{1, 4, \ldots, 3k-2 \}$
$\{v_i, v_{i+1}, v_{i+2}\}$ $\{ v_i v_{i+1}, v_{i+1} v_{i+2}\}$
Table 5.  Subgraphs of the graph $v\nabla \mathcal{F}_k$
$G$ $V(G)$ $E(G)$
$G_1$ $\{v, V(H_1), V(H_2), $ $\ldots, V(H_k)\}$ $\{v w: w \in \{ V(H_1), \ldots, V(H_k)\}\}$
$G_{1+i}$
$i\in \{1, \ldots, k\}$
$\{v, V(H_i)\}$ $\{ E(H_i), v w:w \in V(H_i) \} $
$G_{k+1+i}$
$i\in \{1, \cdots, k \}$
$ V(H_i) $ $E(H_i)$
$G$ $V(G)$ $E(G)$
$G_1$ $\{v, V(H_1), V(H_2), $ $\ldots, V(H_k)\}$ $\{v w: w \in \{ V(H_1), \ldots, V(H_k)\}\}$
$G_{1+i}$
$i\in \{1, \ldots, k\}$
$\{v, V(H_i)\}$ $\{ E(H_i), v w:w \in V(H_i) \} $
$G_{k+1+i}$
$i\in \{1, \cdots, k \}$
$ V(H_i) $ $E(H_i)$
Table 6.  Subgraphs of the graph $v\nabla \mathcal{F'}_k$
$G$ $V(G)$ $E(G)$
$G_1$ $\{v, V(H_1), \ldots, V(H_k), v'\} $ $\{v v', v w: w \in \{ V(H_1), \ldots, V(H_k) \}$
$G_{1+i}$
$i\in \{1, \ldots, k\}$
$\{v, V(H_i)\}$ $\{ E(H_i), v w:w \in V(H_i) \} $
$G_{k+2}$ $\{v, v'\}$ $ \{v v' \}$
$G_{k+2+i}$
$i\in \{1, \cdots, k \}$
$ V(H_i) $ $E(H_i)$
$G$ $V(G)$ $E(G)$
$G_1$ $\{v, V(H_1), \ldots, V(H_k), v'\} $ $\{v v', v w: w \in \{ V(H_1), \ldots, V(H_k) \}$
$G_{1+i}$
$i\in \{1, \ldots, k\}$
$\{v, V(H_i)\}$ $\{ E(H_i), v w:w \in V(H_i) \} $
$G_{k+2}$ $\{v, v'\}$ $ \{v v' \}$
$G_{k+2+i}$
$i\in \{1, \cdots, k \}$
$ V(H_i) $ $E(H_i)$
[1]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[2]

Stefka Bouyuklieva, Zlatko Varbanov. Some connections between self-dual codes, combinatorial designs and secret sharing schemes. Advances in Mathematics of Communications, 2011, 5 (2) : 191-198. doi: 10.3934/amc.2011.5.191

[3]

Ryutaroh Matsumoto. Strongly secure quantum ramp secret sharing constructed from algebraic curves over finite fields. Advances in Mathematics of Communications, 2019, 13 (1) : 1-10. doi: 10.3934/amc.2019001

[4]

Jong Soo Kim, Won Chan Jeong. A model for buyer and supplier coordination and information sharing in order-up-to systems. Journal of Industrial & Management Optimization, 2012, 8 (4) : 987-1015. doi: 10.3934/jimo.2012.8.987

[5]

Xinyu Song, Liming Cai, U. Neumann. Ratio-dependent predator-prey system with stage structure for prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 747-758. doi: 10.3934/dcdsb.2004.4.747

[6]

Jaume Llibre, Claudio Vidal. Hopf periodic orbits for a ratio--dependent predator--prey model with stage structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1859-1867. doi: 10.3934/dcdsb.2016026

[7]

Oscar Patterson-Lomba, Muntaser Safan, Sherry Towers, Jay Taylor. Modeling the role of healthcare access inequalities in epidemic outcomes. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1011-1041. doi: 10.3934/mbe.2016028

[8]

Motahhareh Gharahi, Massoud Hadian Dehkordi. Average complexities of access structures on five participants. Advances in Mathematics of Communications, 2013, 7 (3) : 311-317. doi: 10.3934/amc.2013.7.311

[9]

Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62

[10]

Miguel Atencia, Esther García-Garaluz, Gonzalo Joya. The ratio of hidden HIV infection in Cuba. Mathematical Biosciences & Engineering, 2013, 10 (4) : 959-977. doi: 10.3934/mbe.2013.10.959

[11]

Litao Guo, Bernard L. S. Lin. Vulnerability of super connected split graphs and bisplit graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1179-1185. doi: 10.3934/dcdss.2019081

[12]

Rui Wang, Denghua Zhong, Yuankun Zhang, Jia Yu, Mingchao Li. A multidimensional information model for managing construction information. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1285-1300. doi: 10.3934/jimo.2015.11.1285

[13]

Martin Fraas, David Krejčiřík, Yehuda Pinchover. On some strong ratio limit theorems for heat kernels. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 495-509. doi: 10.3934/dcds.2010.28.495

[14]

Shunfu Jin, Wuyi Yue, Shiying Ge. Equilibrium analysis of an opportunistic spectrum access mechanism with imperfect sensing results. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1255-1271. doi: 10.3934/jimo.2016071

[15]

Motahhareh Gharahi, Shahram Khazaei. Reduced access structures with four minimal qualified subsets on six participants. Advances in Mathematics of Communications, 2018, 12 (1) : 199-214. doi: 10.3934/amc.2018014

[16]

Jinsong Xu. Reversible hidden data access algorithm in cloud computing environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1219-1232. doi: 10.3934/dcdss.2019084

[17]

Srimathy Srinivasan, Andrew Thangaraj. Codes on planar Tanner graphs. Advances in Mathematics of Communications, 2012, 6 (2) : 131-163. doi: 10.3934/amc.2012.6.131

[18]

Cristina M. Ballantine. Ramanujan type graphs and bigraphs. Conference Publications, 2003, 2003 (Special) : 78-82. doi: 10.3934/proc.2003.2003.78

[19]

Daniele D'angeli, Alfredo Donno, Michel Matter, Tatiana Nagnibeda. Schreier graphs of the Basilica group. Journal of Modern Dynamics, 2010, 4 (1) : 167-205. doi: 10.3934/jmd.2010.4.167

[20]

Yong Lin, Gábor Lippner, Dan Mangoubi, Shing-Tung Yau. Nodal geometry of graphs on surfaces. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1291-1298. doi: 10.3934/dcds.2010.28.1291

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (69)
  • HTML views (347)
  • Cited by (0)

Other articles
by authors

[Back to Top]