August  2019, 13(3): 405-420. doi: 10.3934/amc.2019026

Exponential generalised network descriptors

1. 

Faculty of Civil Engineering, Architecture and Geodesy, Matice hrvatske 15, University of Split, Croatia

2. 

Faculty of Science, Bijenička cesta 30, University of Zagreb, Croatia

3. 

Faculty of Science, Rudera Boškovića 33, University of Split, Croatia

* Corresponding author

Received  May 2018 Revised  February 2019 Published  April 2019

In communication networks theory the concepts of networkness and network surplus have recently been defined. Together with transmission and betweenness centrality, they were based on the assumption of equal communication between vertices. Generalised versions of these four descriptors were presented, taking into account that communication between vertices $ u $ and $ v $ is decreasing as the distance between them is increasing. Therefore, we weight the quantity of communication by $ \lambda^{d(u,v)} $ where $ \lambda \in \left\langle0,1 \right\rangle $. Extremal values of these descriptors are analysed.

Citation: Suzana Antunović, Tonči Kokan, Tanja Vojković, Damir Vukičević. Exponential generalised network descriptors. Advances in Mathematics of Communications, 2019, 13 (3) : 405-420. doi: 10.3934/amc.2019026
References:
[1]

S. AntunovicT. KokanT. Vojkovic and D. Vukicevic, Generalised network descriptors, Glasnik Matematicki, 48 (2013), 211-230.  doi: 10.3336/gm.48.2.01.  Google Scholar

[2]

A. L. Barabasi, Linked: How Everything is Connected to Everything Else and What It Means, Persus Publishing, Cambridge, 2002. Google Scholar

[3]

B. Bollobas, Modern Graph Theory, Springer, New York, 1998. doi: 10.1007/978-1-4612-0619-4.  Google Scholar

[4]

S. P. Borgatti and M. G. Everett, A graph-theoretic perspective on centrality, Social Networks, 28 (2006), 466-484.  doi: 10.1016/j.socnet.2005.11.005.  Google Scholar

[5]

U. Brandes, A faster algorithm for betweenness centrality, J. Math. Sociol., 25 (2001), 163-177.  doi: 10.1080/0022250X.2001.9990249.  Google Scholar

[6]

G. CaporossiM. PaivaD. Vukicevic and M. Segatto, Centrality and betweenness: Vertex and edge decomposition of the Wiener index, MATCH Commun. Math. Comput. Chem, 68 (2012), 293-302.   Google Scholar

[7]

C. Dangalchev, Residual closeness and generalized closeness, International Journal of Foundations of Computer Science, 22 (2011), 1939-1948.  doi: 10.1142/S0129054111009136.  Google Scholar

[8]

L. Freeman, A set of measures of centrality based on betweenness, Sociometry, 40 (1977), 35-41.  doi: 10.2307/3033543.  Google Scholar

[9]

L. Freeman, Centrality in social networks: Conceptual clarification, Social Networks, 1 (1978), 215-239.  doi: 10.1016/0378-8733(78)90021-7.  Google Scholar

[10]

S. GagoJ. Coroničová Hurajová and T. Mandaras, On decay centrality in graphs, Mathematica Scandinavica, 123 (2018), 39-50.  doi: 10.7146/math.scand.a-106210.  Google Scholar

[11]

M. O. Jackson and A. Wolinsky, A strategic model of social and economic networks, Journal of Economic Theory, 71 (1996), 44-74.  doi: 10.1006/jeth.1996.0108.  Google Scholar

[12] M. E. J. Newman, Networks: An Introduction, Oxford University Press, Oxford, 2010.  doi: 10.1093/acprof:oso/9780199206650.001.0001.  Google Scholar
[13]

D. Vukicevic and G. Caporossi, Network descriptors based on betweenness centrality and transmission and their extremal values, Discrete Applied Mathematics, 161 (2013), 2678-2686.  doi: 10.1016/j.dam.2013.04.005.  Google Scholar

show all references

References:
[1]

S. AntunovicT. KokanT. Vojkovic and D. Vukicevic, Generalised network descriptors, Glasnik Matematicki, 48 (2013), 211-230.  doi: 10.3336/gm.48.2.01.  Google Scholar

[2]

A. L. Barabasi, Linked: How Everything is Connected to Everything Else and What It Means, Persus Publishing, Cambridge, 2002. Google Scholar

[3]

B. Bollobas, Modern Graph Theory, Springer, New York, 1998. doi: 10.1007/978-1-4612-0619-4.  Google Scholar

[4]

S. P. Borgatti and M. G. Everett, A graph-theoretic perspective on centrality, Social Networks, 28 (2006), 466-484.  doi: 10.1016/j.socnet.2005.11.005.  Google Scholar

[5]

U. Brandes, A faster algorithm for betweenness centrality, J. Math. Sociol., 25 (2001), 163-177.  doi: 10.1080/0022250X.2001.9990249.  Google Scholar

[6]

G. CaporossiM. PaivaD. Vukicevic and M. Segatto, Centrality and betweenness: Vertex and edge decomposition of the Wiener index, MATCH Commun. Math. Comput. Chem, 68 (2012), 293-302.   Google Scholar

[7]

C. Dangalchev, Residual closeness and generalized closeness, International Journal of Foundations of Computer Science, 22 (2011), 1939-1948.  doi: 10.1142/S0129054111009136.  Google Scholar

[8]

L. Freeman, A set of measures of centrality based on betweenness, Sociometry, 40 (1977), 35-41.  doi: 10.2307/3033543.  Google Scholar

[9]

L. Freeman, Centrality in social networks: Conceptual clarification, Social Networks, 1 (1978), 215-239.  doi: 10.1016/0378-8733(78)90021-7.  Google Scholar

[10]

S. GagoJ. Coroničová Hurajová and T. Mandaras, On decay centrality in graphs, Mathematica Scandinavica, 123 (2018), 39-50.  doi: 10.7146/math.scand.a-106210.  Google Scholar

[11]

M. O. Jackson and A. Wolinsky, A strategic model of social and economic networks, Journal of Economic Theory, 71 (1996), 44-74.  doi: 10.1006/jeth.1996.0108.  Google Scholar

[12] M. E. J. Newman, Networks: An Introduction, Oxford University Press, Oxford, 2010.  doi: 10.1093/acprof:oso/9780199206650.001.0001.  Google Scholar
[13]

D. Vukicevic and G. Caporossi, Network descriptors based on betweenness centrality and transmission and their extremal values, Discrete Applied Mathematics, 161 (2013), 2678-2686.  doi: 10.1016/j.dam.2013.04.005.  Google Scholar

Figure 1.  A broom that minimizes $mt_{\lambda }^{e}(G)$
Table 1.  Extremal values of exponential generalised network descriptors
Descriptor $\lambda \in \left\langle 0,1\right\rangle $
Lower bound Upper bound
$mt_{\lambda }^{e}$ broom (starting vertex) complete graph *
$A_n$ $ (n-1)\lambda $
$Mt_{\lambda }^{e}$ open problem broom (starting vertex)
$B_n$
$mc_{\lambda }^{e}$ path (end vertices) complete graph *
$\frac{\lambda^D-\lambda}{\lambda -1}$ $(n-1)\lambda $
$Mc_{\lambda }^{e}$ open problem star (center)
$(n-1)\left[ \lambda +\frac{1}{2}(n-2)\lambda ^{2}\right] $
$mN_{\lambda }^{e}$ broom (starting vertex) vertex-transitive graph
$C_n$ $1$
$MN_{\lambda }^{e}$ vertex-transitive graph star (center)
$1$ $\frac{1}{2}(n-2)\lambda +1$
$m\nu _{\lambda }^{e}$ broom (starting vertex) vertex-transitive graph
$D_n$ $0$
$M\nu _{\lambda }^{e}$ vertex-transitive graph star (center)
$0$ $\frac{1}{2}(n-1)(n-2)\lambda ^{2}$
Descriptor $\lambda \in \left\langle 0,1\right\rangle $
Lower bound Upper bound
$mt_{\lambda }^{e}$ broom (starting vertex) complete graph *
$A_n$ $ (n-1)\lambda $
$Mt_{\lambda }^{e}$ open problem broom (starting vertex)
$B_n$
$mc_{\lambda }^{e}$ path (end vertices) complete graph *
$\frac{\lambda^D-\lambda}{\lambda -1}$ $(n-1)\lambda $
$Mc_{\lambda }^{e}$ open problem star (center)
$(n-1)\left[ \lambda +\frac{1}{2}(n-2)\lambda ^{2}\right] $
$mN_{\lambda }^{e}$ broom (starting vertex) vertex-transitive graph
$C_n$ $1$
$MN_{\lambda }^{e}$ vertex-transitive graph star (center)
$1$ $\frac{1}{2}(n-2)\lambda +1$
$m\nu _{\lambda }^{e}$ broom (starting vertex) vertex-transitive graph
$D_n$ $0$
$M\nu _{\lambda }^{e}$ vertex-transitive graph star (center)
$0$ $\frac{1}{2}(n-1)(n-2)\lambda ^{2}$
[1]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[2]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[3]

Micol Amar, Daniele Andreucci, Claudia Timofte. Homogenization of a modified bidomain model involving imperfect transmission. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021040

[4]

Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021009

[5]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[6]

Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2020159

[7]

Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021016

[8]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, 2021, 15 (3) : 445-474. doi: 10.3934/ipi.2020075

[9]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[10]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[11]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[12]

Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220

[13]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042

[14]

Saeed Assani, Muhammad Salman Mansoor, Faisal Asghar, Yongjun Li, Feng Yang. Efficiency, RTS, and marginal returns from salary on the performance of the NBA players: A parallel DEA network with shared inputs. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021053

[15]

Chunhua Shan. Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021097

[16]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[17]

Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065

[18]

Zhikun She, Xin Jiang. Threshold dynamics of a general delayed within-host viral infection model with humoral immunity and two modes of virus transmission. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3835-3861. doi: 10.3934/dcdsb.2020259

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (245)
  • HTML views (378)
  • Cited by (0)

[Back to Top]