February  2021, 15(1): 23-33. doi: 10.3934/amc.2020040

Golay complementary sets with large zero odd-periodic correlation zones

1. 

School of Mathematics, Southwest Jiaotong University, Chengdu, 610031, China

2. 

State Key Laboratory of Cryptology, P. O. Box 5159, Beijing, 100878, China

Corresponding author: Yang Yang

Received  February 2019 Revised  June 2019 Published  November 2019

Fund Project: This work was supported in part by the National Science Foundation of China under Grants 61771016, 61661146003 and 11571285

Golay complementary sets (GCSs) are widely used in different communication systems, i.e., GCSs could be used in OFDM systems to control peak-to-mean envelope power ratio (PMEPR). In this paper, inspired by the work on GCSs with large zero correlation zone given by Chen et al in 2018, we investigate the relationship between GCSs and zero odd-periodic correlation zone (ZOCZ) sequence sets, and present GCSs with flexible sequence set sizes, sequence lengths, large ZOCZ and low PMEPR. Those proposed sequences could be applied in OFDM system for synchronization.

Citation: Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040
References:
[1]

C. Y. ChenC. H. Wang and C. C. Chao, Complete complementary codes and generalized Reed-Muller codes, IEEE Communi. Lett., 12 (2008), 849-851.  doi: 10.1109/LCOMM.2008.081189.  Google Scholar

[2]

C. Y. Chen and S. W. Wu, Golay complementary sequence sets with large zero correlation zones, IEEE Trans. Communi., 66 (2018), 5197-5204.  doi: 10.1109/TCOMM.2018.2857485.  Google Scholar

[3]

J. D. Coker and A. H. Tewfik, Simplified ranging systems using discrete wavelet decomposition, IEEE Trans. Signal Process., 58 (2010), 575-582.  doi: 10.1109/TSP.2009.2032949.  Google Scholar

[4]

J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes, IEEE Trans. Inform. Theory, 45 (1999), 2397-2417.  doi: 10.1109/18.796380.  Google Scholar

[5]

X. M. Deng and P. Z. Fan, Spreading sequence sets with zero correlation zone, Electron. Lett., 36 (2000), 993-994.  doi: 10.1049/el:20000720.  Google Scholar

[6]

Evolved Universal Terrestrial Radio Access (E-UTRA) - Physical channels and modulation, 3GPP TS 36.211 V14.6, 2018. Google Scholar

[7]

P. Z. FanN. SuehiroN. Kuroyanagi and X. M. Deng, Class of binary sequences with zero correlation zone, Electron. Lett., 35 (1999), 777-779.  doi: 10.1049/el:19990567.  Google Scholar

[8]

M. J. E. Golay, Complementary series, IRE Trans., 7 (1961), 82-87.  doi: 10.1109/tit.1961.1057620.  Google Scholar

[9] S. W. Golomb and G. Gong, Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar, Cambridge University Press, Cambridge, 2005.  doi: 10.1017/CBO9780511546907.  Google Scholar
[10]

G. GongF. Huo and Y. Yang, Large zero autocorrelation zones of Golay sequences and their applications, IEEE Trans. Communi., 61 (2013), 3967-3979.  doi: 10.1109/TCOMM.2013.072813.120928.  Google Scholar

[11]

G. Gong, F. Huo and Y. Yang, Large zero autocorrelation zone of Golay pairs and QAM Golay pairs, IEEE International Symposium on Information Theory, 2013, 3135–3139. doi: 10.1109/ISIT.2013.6620803.  Google Scholar

[12]

T. Hayashi, A generalization of binary zero-correlation zone sequence sets constructed from Hadamard matrices, IEICE Trans. Fundam., E87-A (2004), 559-565.   Google Scholar

[13]

H. G. Hu and G. Gong, New sets of zero or low correlation zone sequences via interleaving techniques, IEEE Trans. Inform. Theory, 56 (2010), 1702-1713.  doi: 10.1109/TIT.2010.2040887.  Google Scholar

[14]

K. M. Z. IslamT. Y. Al-Naffouri and N. Al-Dhahir, On optimum pilot design for comb-type OFDM transmission over doubly-selective channels, IEEE Trans. Communi., 59 (2011), 930-935.  doi: 10.1109/TCOMM.2011.020411.100151.  Google Scholar

[15]

IEEE Standard for Local and Metropolitan Area Networks-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard 802.11ad, 2014. Google Scholar

[16]

IEEE Standard for Local and Metropolitan Area Networks-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard 802.11ax, 2018. Google Scholar

[17]

IEEE Standard for Local and Metropolitan Area Networks-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard 802.11ay, 2018. Google Scholar

[18]

B. LongP. Zhang and J. Hu, A generalized QS-CDMA system and the design of new spreading codes, IEEE Trans. Veh. Tech., 47 (1998), 1268-1275.  doi: 10.1109/25.728516.  Google Scholar

[19]

J. L. Massey and J. J. Uhran, Sub-baud coding, Proceedings of the Thirteenth Annual Allerton Conference on Circuit and System Theory, 1975,539–547. Google Scholar

[20]

K. G. Paterson, Generalized Reed-Muller codes and power control for OFDM modulation, IEEE Trans. Inform. Theory, 46 (2000), 104-120.  doi: 10.1109/18.817512.  Google Scholar

[21]

M. B. Pursley, Introduction to Digital Communications., Pearson Prentice Hall, 2005. Google Scholar

[22]

M. B. Pursley, Performance evaluation for phase-coded spread-spectrum multiple-access communication - Part I: System analysis, IEEE Trans. Inform. Theory, 25 (1977), 795-799.  doi: 10.1109/TCOM.1977.1093915.  Google Scholar

[23]

M. B. Pursley, Performance evaluation for phase-coded spread-spectrum multiple-access communication - Part II: Code sequence analysis, IEEE Trans. Inform. Theory, 25 (1977), 800-803.  doi: 10.1109/TCOM.1977.1093916.  Google Scholar

[24]

A. Rathinakumar and A. K. Chaturvedi, A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences, IEEE. Trans. Inform. Theory, 52 (2006), 3817-3826.  doi: 10.1109/TIT.2006.878171.  Google Scholar

[25]

J. R. Seberry, B. J. Wysocki and T. A. Wysocki, On a use of Golay sequences for asynchronous DS CDMA applications, in Advanced Signal Processing for Communication Systems, The International Series in Engineering and Computer Science, 703, Springer, Boston, 2002,183–196. doi: 10.1007/0-306-47791-2_14.  Google Scholar

[26]

X. H. TangP. Z. Fan and S. Matsufuji, Lower bounds on the maximum correlation of sequence set with low or zero correlation zone, Electron. Lett., 36 (2000), 551-552.   Google Scholar

[27]

J. D. Yang, X. Jin, K. Y. Song, J. S. No and D. J. Shin, Multicode MIMO systems with quaternary LCZ and ZCZ sequences, IEEE Trans. Veh. Technol., 2008, 2334–2341. doi: 10.1109/PIMRC.2007.4394294.  Google Scholar

[28]

Y. Yang, F. Huo and G. Gong, Large zero odd periodic autocorrelation zone of Golay sequences and QAM Golay sequences, ISIT, 2012, 1029–1033. doi: 10.1109/ISIT.2012.6283006.  Google Scholar

[29]

W. C. Zhang, F. Zeng, X. H. Long and M. X. Xie, Improved mutually orthogonal ZCZ polyphase sequence sets and their applications in OFDM frequency synchronization, Proc. Int. Conf. on Wireless Commun. Netw. and Mobile Comput., 2010, 1–5. doi: 10.1109/WICOM.2010.5600748.  Google Scholar

[30]

R. Q. Zhang, X. Cheng, M. Ma and B. L. Jiao, Interference-avoidance pilot design using ZCZ sequences for multi-cell MIMO-OFDM systems, Proc. IEEE Global Commun. Conf., 2012, 5056–5061. doi: 10.1109/GLOCOM.2012.6503922.  Google Scholar

[31]

Z. C. ZhouX. H. Tang and G. Gong, A new class of sequences with zero or low correlation zone based on interleaving technique, IEEE Trans. Inform. Theory, 54 (2008), 4267-4273.  doi: 10.1109/TIT.2008.928256.  Google Scholar

[32]

Z. C. ZhouD. ZhangT. Helleseth and J. Wen, A construction of multiple optimal ZCZ sequence sets with good cross-correlation, IEEE Trans. Inform. Theory, 64 (2018), 1340-1346.  doi: 10.1109/TIT.2017.2756845.  Google Scholar

show all references

References:
[1]

C. Y. ChenC. H. Wang and C. C. Chao, Complete complementary codes and generalized Reed-Muller codes, IEEE Communi. Lett., 12 (2008), 849-851.  doi: 10.1109/LCOMM.2008.081189.  Google Scholar

[2]

C. Y. Chen and S. W. Wu, Golay complementary sequence sets with large zero correlation zones, IEEE Trans. Communi., 66 (2018), 5197-5204.  doi: 10.1109/TCOMM.2018.2857485.  Google Scholar

[3]

J. D. Coker and A. H. Tewfik, Simplified ranging systems using discrete wavelet decomposition, IEEE Trans. Signal Process., 58 (2010), 575-582.  doi: 10.1109/TSP.2009.2032949.  Google Scholar

[4]

J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes, IEEE Trans. Inform. Theory, 45 (1999), 2397-2417.  doi: 10.1109/18.796380.  Google Scholar

[5]

X. M. Deng and P. Z. Fan, Spreading sequence sets with zero correlation zone, Electron. Lett., 36 (2000), 993-994.  doi: 10.1049/el:20000720.  Google Scholar

[6]

Evolved Universal Terrestrial Radio Access (E-UTRA) - Physical channels and modulation, 3GPP TS 36.211 V14.6, 2018. Google Scholar

[7]

P. Z. FanN. SuehiroN. Kuroyanagi and X. M. Deng, Class of binary sequences with zero correlation zone, Electron. Lett., 35 (1999), 777-779.  doi: 10.1049/el:19990567.  Google Scholar

[8]

M. J. E. Golay, Complementary series, IRE Trans., 7 (1961), 82-87.  doi: 10.1109/tit.1961.1057620.  Google Scholar

[9] S. W. Golomb and G. Gong, Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar, Cambridge University Press, Cambridge, 2005.  doi: 10.1017/CBO9780511546907.  Google Scholar
[10]

G. GongF. Huo and Y. Yang, Large zero autocorrelation zones of Golay sequences and their applications, IEEE Trans. Communi., 61 (2013), 3967-3979.  doi: 10.1109/TCOMM.2013.072813.120928.  Google Scholar

[11]

G. Gong, F. Huo and Y. Yang, Large zero autocorrelation zone of Golay pairs and QAM Golay pairs, IEEE International Symposium on Information Theory, 2013, 3135–3139. doi: 10.1109/ISIT.2013.6620803.  Google Scholar

[12]

T. Hayashi, A generalization of binary zero-correlation zone sequence sets constructed from Hadamard matrices, IEICE Trans. Fundam., E87-A (2004), 559-565.   Google Scholar

[13]

H. G. Hu and G. Gong, New sets of zero or low correlation zone sequences via interleaving techniques, IEEE Trans. Inform. Theory, 56 (2010), 1702-1713.  doi: 10.1109/TIT.2010.2040887.  Google Scholar

[14]

K. M. Z. IslamT. Y. Al-Naffouri and N. Al-Dhahir, On optimum pilot design for comb-type OFDM transmission over doubly-selective channels, IEEE Trans. Communi., 59 (2011), 930-935.  doi: 10.1109/TCOMM.2011.020411.100151.  Google Scholar

[15]

IEEE Standard for Local and Metropolitan Area Networks-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard 802.11ad, 2014. Google Scholar

[16]

IEEE Standard for Local and Metropolitan Area Networks-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard 802.11ax, 2018. Google Scholar

[17]

IEEE Standard for Local and Metropolitan Area Networks-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard 802.11ay, 2018. Google Scholar

[18]

B. LongP. Zhang and J. Hu, A generalized QS-CDMA system and the design of new spreading codes, IEEE Trans. Veh. Tech., 47 (1998), 1268-1275.  doi: 10.1109/25.728516.  Google Scholar

[19]

J. L. Massey and J. J. Uhran, Sub-baud coding, Proceedings of the Thirteenth Annual Allerton Conference on Circuit and System Theory, 1975,539–547. Google Scholar

[20]

K. G. Paterson, Generalized Reed-Muller codes and power control for OFDM modulation, IEEE Trans. Inform. Theory, 46 (2000), 104-120.  doi: 10.1109/18.817512.  Google Scholar

[21]

M. B. Pursley, Introduction to Digital Communications., Pearson Prentice Hall, 2005. Google Scholar

[22]

M. B. Pursley, Performance evaluation for phase-coded spread-spectrum multiple-access communication - Part I: System analysis, IEEE Trans. Inform. Theory, 25 (1977), 795-799.  doi: 10.1109/TCOM.1977.1093915.  Google Scholar

[23]

M. B. Pursley, Performance evaluation for phase-coded spread-spectrum multiple-access communication - Part II: Code sequence analysis, IEEE Trans. Inform. Theory, 25 (1977), 800-803.  doi: 10.1109/TCOM.1977.1093916.  Google Scholar

[24]

A. Rathinakumar and A. K. Chaturvedi, A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences, IEEE. Trans. Inform. Theory, 52 (2006), 3817-3826.  doi: 10.1109/TIT.2006.878171.  Google Scholar

[25]

J. R. Seberry, B. J. Wysocki and T. A. Wysocki, On a use of Golay sequences for asynchronous DS CDMA applications, in Advanced Signal Processing for Communication Systems, The International Series in Engineering and Computer Science, 703, Springer, Boston, 2002,183–196. doi: 10.1007/0-306-47791-2_14.  Google Scholar

[26]

X. H. TangP. Z. Fan and S. Matsufuji, Lower bounds on the maximum correlation of sequence set with low or zero correlation zone, Electron. Lett., 36 (2000), 551-552.   Google Scholar

[27]

J. D. Yang, X. Jin, K. Y. Song, J. S. No and D. J. Shin, Multicode MIMO systems with quaternary LCZ and ZCZ sequences, IEEE Trans. Veh. Technol., 2008, 2334–2341. doi: 10.1109/PIMRC.2007.4394294.  Google Scholar

[28]

Y. Yang, F. Huo and G. Gong, Large zero odd periodic autocorrelation zone of Golay sequences and QAM Golay sequences, ISIT, 2012, 1029–1033. doi: 10.1109/ISIT.2012.6283006.  Google Scholar

[29]

W. C. Zhang, F. Zeng, X. H. Long and M. X. Xie, Improved mutually orthogonal ZCZ polyphase sequence sets and their applications in OFDM frequency synchronization, Proc. Int. Conf. on Wireless Commun. Netw. and Mobile Comput., 2010, 1–5. doi: 10.1109/WICOM.2010.5600748.  Google Scholar

[30]

R. Q. Zhang, X. Cheng, M. Ma and B. L. Jiao, Interference-avoidance pilot design using ZCZ sequences for multi-cell MIMO-OFDM systems, Proc. IEEE Global Commun. Conf., 2012, 5056–5061. doi: 10.1109/GLOCOM.2012.6503922.  Google Scholar

[31]

Z. C. ZhouX. H. Tang and G. Gong, A new class of sequences with zero or low correlation zone based on interleaving technique, IEEE Trans. Inform. Theory, 54 (2008), 4267-4273.  doi: 10.1109/TIT.2008.928256.  Google Scholar

[32]

Z. C. ZhouD. ZhangT. Helleseth and J. Wen, A construction of multiple optimal ZCZ sequence sets with good cross-correlation, IEEE Trans. Inform. Theory, 64 (2018), 1340-1346.  doi: 10.1109/TIT.2017.2756845.  Google Scholar

Table 1.  Comparison of GCSs/GCPs with Large ZCZ/ZOCZ Property
Parameters Constraints Ref.
$ (2,2^m,2^{m-2}) $ Golay-ZCZ $ g_m\in \{\frac{H}{2},0\} $, $ H\equiv0\; \mathrm{mod}\; 2 $ [10,11]
$ (2,2^m,2^{\pi(2)-1}) $ Golay-ZCZ $ \begin{array}{l} g_m\in \{0,\frac{H}{2}\},H\equiv 0\; \mathrm{mod}\; 2\pi(1)=m \end{array} $ [2]
$ (2^k,2^m,2^{\pi_1(2)-1}) $ Golay-ZCZ $ \begin{array}{l}g_m\in \{0,\frac{H}{2}\}, H\equiv0\; \mathrm{mod}\; 2, \pi_\alpha(1)=m-\alpha+1, \;\mbox{ for }\; 1\le\alpha\le k\end{array} $ [2]
$ (2,2^m,2^{\pi(2)-1}) $ Golay-ZOCZ $ \begin{array}{l} c_m\in \{\frac{H}{4},\frac{3H}{4}\},H\equiv0\; \mathrm{mod}\; 4, \pi(1)=m \end{array} $ Thm. 1
$ (2^k,2^m,2^{\pi_1(2)-1}) $ Golay-ZOCZ $ \begin{array}{l}g_m\in \{\frac{H}{4},\frac{3H}{4}\}, H\equiv0\; \mathrm{mod}\; 4, \pi_\alpha(1)=m-\alpha+1, \;\mbox{ for }\; 1\le\alpha\le k\end{array} $ Thm. 2
Parameters Constraints Ref.
$ (2,2^m,2^{m-2}) $ Golay-ZCZ $ g_m\in \{\frac{H}{2},0\} $, $ H\equiv0\; \mathrm{mod}\; 2 $ [10,11]
$ (2,2^m,2^{\pi(2)-1}) $ Golay-ZCZ $ \begin{array}{l} g_m\in \{0,\frac{H}{2}\},H\equiv 0\; \mathrm{mod}\; 2\pi(1)=m \end{array} $ [2]
$ (2^k,2^m,2^{\pi_1(2)-1}) $ Golay-ZCZ $ \begin{array}{l}g_m\in \{0,\frac{H}{2}\}, H\equiv0\; \mathrm{mod}\; 2, \pi_\alpha(1)=m-\alpha+1, \;\mbox{ for }\; 1\le\alpha\le k\end{array} $ [2]
$ (2,2^m,2^{\pi(2)-1}) $ Golay-ZOCZ $ \begin{array}{l} c_m\in \{\frac{H}{4},\frac{3H}{4}\},H\equiv0\; \mathrm{mod}\; 4, \pi(1)=m \end{array} $ Thm. 1
$ (2^k,2^m,2^{\pi_1(2)-1}) $ Golay-ZOCZ $ \begin{array}{l}g_m\in \{\frac{H}{4},\frac{3H}{4}\}, H\equiv0\; \mathrm{mod}\; 4, \pi_\alpha(1)=m-\alpha+1, \;\mbox{ for }\; 1\le\alpha\le k\end{array} $ Thm. 2
[1]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[2]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[3]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[4]

Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3781-3796. doi: 10.3934/dcds.2021016

[5]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[6]

Chloé Jimenez. A zero sum differential game with correlated informations on the initial position. A case with a continuum of initial positions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021009

[7]

Huaning Liu, Xi Liu. On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021008

[8]

Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250

[9]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[10]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004

[11]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[12]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2677-2698. doi: 10.3934/dcds.2020381

[13]

Jun He, Guangjun Xu, Yanmin Liu. New Z-eigenvalue localization sets for tensors with applications. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021058

[14]

Emily McMillon, Allison Beemer, Christine A. Kelley. Extremal absorbing sets in low-density parity-check codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021003

[15]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[16]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[17]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[18]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[19]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[20]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021070

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (152)
  • HTML views (608)
  • Cited by (0)

Other articles
by authors

[Back to Top]