August  2020, 14(3): 437-453. doi: 10.3934/amc.2020047

A construction of $ \mathbb{F}_2 $-linear cyclic, MDS codes

1. 

Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, Campinas, Brazil

2. 

Departament de Matemàtiques, Universitat d'Alacant, Alacant, Spain

3. 

School of Mathematics and Statistics, Carleton University, Ottawa, Canada

Received  November 2018 Revised  June 2019 Published  November 2019

Fund Project: The first author was supported by CAPES (Brazil). The work of the second author was partially supported by Spanish grants AICO/2017/128 of the Generalitat Valenciana and VIGROB-287 of the Universitat d'Alacant. The third and fourth authors were supported by NSERC (Canada). The first, third and fourth authors acknowledge support from FAPESP SPRINT grant 2016/50476-0

In this paper we construct $ \mathbb{F}_2 $-linear codes over $ \mathbb{F}_{2}^{b} $ with length $ n $ and dimension $ n-r $ where $ n = rb $. These codes have good properties, namely cyclicity, low density parity-check matrices and maximum distance separation in some cases. For the construction, we consider an odd prime $ p $, let $ n = p-1 $ and utilize a partition of $ \mathbb{Z}_n $. Then we apply a Zech logarithm to the elements of these sets and use the results to construct an index array which represents the parity-check matrix of the code. These codes are always cyclic and the density of the parity-check and the generator matrices decreases to $ 0 $ as $ n $ grows (for a fixed $ r $). When $ r = 2 $ we prove that these codes are always maximum distance separable. For higher $ r $ some of them retain this property.

Citation: Sara D. Cardell, Joan-Josep Climent, Daniel Panario, Brett Stevens. A construction of $ \mathbb{F}_2 $-linear cyclic, MDS codes. Advances in Mathematics of Communications, 2020, 14 (3) : 437-453. doi: 10.3934/amc.2020047
References:
[1]

M. BarbierC. Chabot and G. Quintin, On quasi-cyclic codes as a generalization of cyclic codes, Finite Fields and Their Applications, 18 (2012), 904-919.  doi: 10.1016/j.ffa.2012.06.003.  Google Scholar

[2]

R. Barbulescu, C. Bouvier, J. Detrey, P. Gaudry, H. Jeljeli, E. Thomé, M. Videau and P. Zimmermann, Discrete logarithm in $GF(2^{809})$ with FFS, PKC 2014: Public-Key Cryptography-PKC 2014, (2014), 221–238, http://dx.doi.org/10.1007/978-3-642-54631-0_13. doi: 10.1007/978-3-642-54631-0.  Google Scholar

[3]

M. BlaumJ. BradyJ. Bruck and J. Menon, EVENODD: An efficient scheme for tolerating double disk failures in RAID architectures, IEEE Transactions on Computers, 44 (1995), 192-202.  doi: 10.1109/12.364531.  Google Scholar

[4]

M. Blaum and J. Bruck, Decoding the Golay code with Venn diagrams, IEEE Transactions on Information Theory, 36 (1990), 906-910.  doi: 10.1109/18.53756.  Google Scholar

[5]

M. BlaumJ. Bruck and A. Vardy, MDS array codes with independent parity symbols, IEEE Transactions on Information Theory, 42 (1995), 529-542.  doi: 10.1109/ISIT.1995.535761.  Google Scholar

[6]

M. Blaum, P. G. Farrell and H. C. A. van Tilborg, Array codes, in Handbook of Coding Theory, North-Holland, Amsterdam, 1/2 (1998), 1855–1909.  Google Scholar

[7]

M. Blaum and R. M. Roth, New array codes for multiple phased burst correction, IEEE Transactions on Information Theory, 39 (1993), 66-77.  doi: 10.1109/18.179343.  Google Scholar

[8]

M. Blaum and R. M. Roth, On lowest density MDS codes, IEEE Transactions on Information Theory, 45 (1999), 46-59.  doi: 10.1109/18.746771.  Google Scholar

[9]

S. D. Cardell, Constructions of MDS Codes over Extension Alphabets, PhD thesis, Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante, Alicante, España, 2012. Google Scholar

[10]

S. D. CardellJ.-J. Climent and V. Requena, A construction of MDS array codes, WIT Transactions on Information and Communication Technologies, 45 (2013), 47-58.  doi: 10.2495/DATA130051.  Google Scholar

[11]

S. D. Cardell and A. Fúster-Sabater, Recovering decimation-based cryptographic sequences by means of linear CAs, (2018), https://arXiv.org/abs/1802.02206. Google Scholar

[12] G. A. Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary Storage, Cambridge, MA: MIT Press, 1992.   Google Scholar
[13]

K. Huber, Some comments on Zech's logarithms, IEEE Transactions on Information Theory, 36 (1990), 946-950.  doi: 10.1109/18.53764.  Google Scholar

[14]

A. Kotzig, Hamilton graphs and Hamilton circuits, Theory of Graphs and its Applications, Publ. House Czechoslovak Acad. Sci., Prague, (1964), 63–82.  Google Scholar

[15]

E. Louidor and R. M. Roth, Lowest density MDS codes over extension alphabets, IEEE Transactions on Information Theory, 52 (2006), 3186-3197.  doi: 10.1109/TIT.2006.876235.  Google Scholar

[16]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[17]

E. Mendelsohn and A. Rosa, One-factorizations of the complete graph-A survey, Journal of Graph Theory, 9 (1985), 43-65.  doi: 10.1002/jgt.3190090104.  Google Scholar

[18]

M. Sudan, Algorithmic Introduction to Coding Theory, 2002, https://people.csail.mit.edu/madhu/FT02/scribe/lect16.ps. Google Scholar

[19]

L. H. Xu and J. Bruck, X-code: MDS array codes with optimal encoding, IEEE Transactions on Information Theory, 45 (1999), 272-276.  doi: 10.1109/18.746809.  Google Scholar

[20]

G. V. ZaitzevV. A. Zinov'ev and N. V. Semakov, Minimum-check-density codes for correcting bytes of errors, erasures, or defects, Problems of Information Transmission, 19 (1983), 197-204.   Google Scholar

show all references

References:
[1]

M. BarbierC. Chabot and G. Quintin, On quasi-cyclic codes as a generalization of cyclic codes, Finite Fields and Their Applications, 18 (2012), 904-919.  doi: 10.1016/j.ffa.2012.06.003.  Google Scholar

[2]

R. Barbulescu, C. Bouvier, J. Detrey, P. Gaudry, H. Jeljeli, E. Thomé, M. Videau and P. Zimmermann, Discrete logarithm in $GF(2^{809})$ with FFS, PKC 2014: Public-Key Cryptography-PKC 2014, (2014), 221–238, http://dx.doi.org/10.1007/978-3-642-54631-0_13. doi: 10.1007/978-3-642-54631-0.  Google Scholar

[3]

M. BlaumJ. BradyJ. Bruck and J. Menon, EVENODD: An efficient scheme for tolerating double disk failures in RAID architectures, IEEE Transactions on Computers, 44 (1995), 192-202.  doi: 10.1109/12.364531.  Google Scholar

[4]

M. Blaum and J. Bruck, Decoding the Golay code with Venn diagrams, IEEE Transactions on Information Theory, 36 (1990), 906-910.  doi: 10.1109/18.53756.  Google Scholar

[5]

M. BlaumJ. Bruck and A. Vardy, MDS array codes with independent parity symbols, IEEE Transactions on Information Theory, 42 (1995), 529-542.  doi: 10.1109/ISIT.1995.535761.  Google Scholar

[6]

M. Blaum, P. G. Farrell and H. C. A. van Tilborg, Array codes, in Handbook of Coding Theory, North-Holland, Amsterdam, 1/2 (1998), 1855–1909.  Google Scholar

[7]

M. Blaum and R. M. Roth, New array codes for multiple phased burst correction, IEEE Transactions on Information Theory, 39 (1993), 66-77.  doi: 10.1109/18.179343.  Google Scholar

[8]

M. Blaum and R. M. Roth, On lowest density MDS codes, IEEE Transactions on Information Theory, 45 (1999), 46-59.  doi: 10.1109/18.746771.  Google Scholar

[9]

S. D. Cardell, Constructions of MDS Codes over Extension Alphabets, PhD thesis, Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante, Alicante, España, 2012. Google Scholar

[10]

S. D. CardellJ.-J. Climent and V. Requena, A construction of MDS array codes, WIT Transactions on Information and Communication Technologies, 45 (2013), 47-58.  doi: 10.2495/DATA130051.  Google Scholar

[11]

S. D. Cardell and A. Fúster-Sabater, Recovering decimation-based cryptographic sequences by means of linear CAs, (2018), https://arXiv.org/abs/1802.02206. Google Scholar

[12] G. A. Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary Storage, Cambridge, MA: MIT Press, 1992.   Google Scholar
[13]

K. Huber, Some comments on Zech's logarithms, IEEE Transactions on Information Theory, 36 (1990), 946-950.  doi: 10.1109/18.53764.  Google Scholar

[14]

A. Kotzig, Hamilton graphs and Hamilton circuits, Theory of Graphs and its Applications, Publ. House Czechoslovak Acad. Sci., Prague, (1964), 63–82.  Google Scholar

[15]

E. Louidor and R. M. Roth, Lowest density MDS codes over extension alphabets, IEEE Transactions on Information Theory, 52 (2006), 3186-3197.  doi: 10.1109/TIT.2006.876235.  Google Scholar

[16]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[17]

E. Mendelsohn and A. Rosa, One-factorizations of the complete graph-A survey, Journal of Graph Theory, 9 (1985), 43-65.  doi: 10.1002/jgt.3190090104.  Google Scholar

[18]

M. Sudan, Algorithmic Introduction to Coding Theory, 2002, https://people.csail.mit.edu/madhu/FT02/scribe/lect16.ps. Google Scholar

[19]

L. H. Xu and J. Bruck, X-code: MDS array codes with optimal encoding, IEEE Transactions on Information Theory, 45 (1999), 272-276.  doi: 10.1109/18.746809.  Google Scholar

[20]

G. V. ZaitzevV. A. Zinov'ev and N. V. Semakov, Minimum-check-density codes for correcting bytes of errors, erasures, or defects, Problems of Information Transmission, 19 (1983), 197-204.   Google Scholar

Table 1.  Index array constructed in Section 3
$0 $ $1 $ $2 $ $\cdots$ $p-3 $ $p-2 $
$D_0 $ $ D_0+1 $ $ D_0+2 $ $\cdots$ $ D_0+p-3 $ $D_0+p-2 $
$ D_1 $ $ D_1+1 $ $ D_1+2 $ $\cdots$ $ D_1+p-3 $ $D_1+p-2$
$\vdots$ $\vdots$ $ \vdots $ $ $ $ \vdots $ $ \vdots $
$ D_{u-1} $ $D_{u-1}+1$ $D_{u-1}+2 $ $\cdots$ $ D_{u-1}+p-3 $ $D_{u-1}+p-2 $
$D_{u+1}$ $ D_{u+1}+1 $ $D_{u+1}+2$ $\cdots$ $ D_{u+1}+p-3 $ $D_{u+1}+p-2 $
$\vdots$ $\vdots$ $ \vdots $ $ $ $ \vdots $ $ \vdots $
$ D_{b-1} $ $ D_{b-1}+1 $ $D_{b-1}+2 $ $ \cdots $ $ D_{b-1}+p-3 $ $D_{b-1}+p-2 $
$0 $ $1 $ $2 $ $\cdots$ $p-3 $ $p-2 $
$D_0 $ $ D_0+1 $ $ D_0+2 $ $\cdots$ $ D_0+p-3 $ $D_0+p-2 $
$ D_1 $ $ D_1+1 $ $ D_1+2 $ $\cdots$ $ D_1+p-3 $ $D_1+p-2$
$\vdots$ $\vdots$ $ \vdots $ $ $ $ \vdots $ $ \vdots $
$ D_{u-1} $ $D_{u-1}+1$ $D_{u-1}+2 $ $\cdots$ $ D_{u-1}+p-3 $ $D_{u-1}+p-2 $
$D_{u+1}$ $ D_{u+1}+1 $ $D_{u+1}+2$ $\cdots$ $ D_{u+1}+p-3 $ $D_{u+1}+p-2 $
$\vdots$ $\vdots$ $ \vdots $ $ $ $ \vdots $ $ \vdots $
$ D_{b-1} $ $ D_{b-1}+1 $ $D_{b-1}+2 $ $ \cdots $ $ D_{b-1}+p-3 $ $D_{b-1}+p-2 $
Table 2.  Index array representing the parity-check matrix when $ r = 2 $
$0 $ $1 $ $2 $ $\cdots $ $p-3 $ $p-2 $
$ D_1 $ $ D_1+1 $ $ D_1+2 $ $ \cdots $ $ D_1+p-3 $ $D_1+p-2$
$ D_2 $ $ D_2+1 $ $ D_2+2 $ $ \cdots $ $ D_2+p-3 $ $D_2+p-2 $
$ \vdots $ $ \vdots $ $ \vdots $ $ $ $ \vdots $ $ \vdots $
$ D_{b-1} $ $ D_{b-1}+1 $ $D_{b-1}+2 $ $ \cdots $ $ D_{b-1}+p-3 $ $D_{b-1}+p-2 $
$0 $ $1 $ $2 $ $\cdots $ $p-3 $ $p-2 $
$ D_1 $ $ D_1+1 $ $ D_1+2 $ $ \cdots $ $ D_1+p-3 $ $D_1+p-2$
$ D_2 $ $ D_2+1 $ $ D_2+2 $ $ \cdots $ $ D_2+p-3 $ $D_2+p-2 $
$ \vdots $ $ \vdots $ $ \vdots $ $ $ $ \vdots $ $ \vdots $
$ D_{b-1} $ $ D_{b-1}+1 $ $D_{b-1}+2 $ $ \cdots $ $ D_{b-1}+p-3 $ $D_{b-1}+p-2 $
Table 3.  Index array representing the generator matrix computed from the index array in Table 2
$B $ $ B+(b-1) $ $ B+2(b-1) $ $ B+3(b-1) $ $ B+4(b-1) $ $ \cdots $ $ B+(n-1)(b-1) $
$ 0 $ $ b-1 $ $ 2(b-1) $ $ 3(b-1) $ $ 4(b-1) $ $ \cdots $ $(n-1)(b-1) $
$ 1 $ $ b $ $ 2(b-1)+1 $ $ 3(b-1)+1 $ $ 4(b-1)+1 $ $ \cdots $ $(n-1)(b-1)+1 $
$ 2 $ $ b+1 $ $ 2(b-1)+2 $ $ 3(b-1)+2 $ $ 4(b-1)+2 $ $ \cdots $ $(n-1)(b-1)+2 $
$ \vdots $ $ \vdots $ $ \vdots $ $ \cdots $ $ \vdots $ $ $ $\vdots $
$ b-2 $ $ 2b-3 $ $ 3(b-1)-1 $ $ 4(b-1)-1 $ $ 5(b-1)-1 $ $ \ldots $ $n(b-1)-1 $
$B $ $ B+(b-1) $ $ B+2(b-1) $ $ B+3(b-1) $ $ B+4(b-1) $ $ \cdots $ $ B+(n-1)(b-1) $
$ 0 $ $ b-1 $ $ 2(b-1) $ $ 3(b-1) $ $ 4(b-1) $ $ \cdots $ $(n-1)(b-1) $
$ 1 $ $ b $ $ 2(b-1)+1 $ $ 3(b-1)+1 $ $ 4(b-1)+1 $ $ \cdots $ $(n-1)(b-1)+1 $
$ 2 $ $ b+1 $ $ 2(b-1)+2 $ $ 3(b-1)+2 $ $ 4(b-1)+2 $ $ \cdots $ $(n-1)(b-1)+2 $
$ \vdots $ $ \vdots $ $ \vdots $ $ \cdots $ $ \vdots $ $ $ $\vdots $
$ b-2 $ $ 2b-3 $ $ 3(b-1)-1 $ $ 4(b-1)-1 $ $ 5(b-1)-1 $ $ \ldots $ $n(b-1)-1 $
Table 4.  Index array obtained by subtracting $ 1 $ modulo $ n $ to every set in the array given in Table 1
$p-2 $ $0 $ $1 $ $2 $ $\cdots $ $p-3 $
$ D_0+p-2 $ $D_0 $ $D_0+1 $ $ D_0+2 % $ $ \cdots $ $ D_0+p-3 $
$ D_1+p-2 $ $D_1 $ $D_1 +1 $ $ D_1+2 % $ $ \cdots $ $ D_1+p-3$
$ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ $ $ \vdots $
$ D_{u-1}+p-2 $ $D_{u-1} $ $D_{u-1}+1 $ $ D_{u-1}+2 % $ $ \cdots $ $ D_{u-1}+p-3 $
$ D_{u+1}+p-2 $ $D_{u+1} $ $D_{u+1} +1 $ $ D_{u+1}+2 % $ $ \cdots $ $ D_{u+1}+p-3 $
$ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ $ $ \vdots $
$ D_{b-1}+p-2 $ $D_{b-1} $ $D_{b-1} +1 $ $ D_{b-1}+2 $ $ \cdots $ $ D_{b-1}+p-3 $
$p-2 $ $0 $ $1 $ $2 $ $\cdots $ $p-3 $
$ D_0+p-2 $ $D_0 $ $D_0+1 $ $ D_0+2 % $ $ \cdots $ $ D_0+p-3 $
$ D_1+p-2 $ $D_1 $ $D_1 +1 $ $ D_1+2 % $ $ \cdots $ $ D_1+p-3$
$ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ $ $ \vdots $
$ D_{u-1}+p-2 $ $D_{u-1} $ $D_{u-1}+1 $ $ D_{u-1}+2 % $ $ \cdots $ $ D_{u-1}+p-3 $
$ D_{u+1}+p-2 $ $D_{u+1} $ $D_{u+1} +1 $ $ D_{u+1}+2 % $ $ \cdots $ $ D_{u+1}+p-3 $
$ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ $ $ \vdots $
$ D_{b-1}+p-2 $ $D_{b-1} $ $D_{b-1} +1 $ $ D_{b-1}+2 $ $ \cdots $ $ D_{b-1}+p-3 $
Table 5.  MDS property of $ C(p, r, \alpha) $ for different values of $ p $ and $ r $
$p $
5 7 11 13 17 19 23 29 31 37 41 43
$ r $ 2
3 ×
4 × × ×
5 × × ×
6 × × × × ×
7 × ×
8 × ×
9 × ×
10 × ×
11 ×
12 ×
13
14 × ×
15 ×
$p $
5 7 11 13 17 19 23 29 31 37 41 43
$ r $ 2
3 ×
4 × × ×
5 × × ×
6 × × × × ×
7 × ×
8 × ×
9 × ×
10 × ×
11 ×
12 ×
13
14 × ×
15 ×
[1]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[2]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[3]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[4]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[5]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[6]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[7]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[8]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[9]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[10]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[11]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[12]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[13]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[14]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[15]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[16]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[17]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[18]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[19]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[20]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (2557)
  • HTML views (441)
  • Cited by (0)

[Back to Top]