
Previous Article
Monotone solutions to a class of elliptic and diffusion equations
 CPAA Home
 This Issue

Next Article
Pullback attractors for asymptotically upper semicompact nonautonomous multivalued semiflows
Problem on stationary flow of electrorheological fluids at the generalized conditions of slip on the boundary
1.  Lehrstuhl für Angewandte Analysis mit Schwerpunkt Numerik, Universität Augsburg, Universitätsstrasse, 14, 86159 Augsburg, Germany 
[1] 
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems  A, 2009, 23 (1&2) : 115132. doi: 10.3934/dcds.2009.23.115 
[2] 
Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete & Continuous Dynamical Systems  B, 2018, 23 (9) : 40034020. doi: 10.3934/dcdsb.2018121 
[3] 
Yasir Ali, Arshad Alam Khan. Exact solution of magnetohydrodynamic slip flow and heat transfer over an oscillating and translating porous plate. Discrete & Continuous Dynamical Systems  S, 2018, 11 (4) : 595606. doi: 10.3934/dcdss.2018034 
[4] 
Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2D EricksenLeslie system. Discrete & Continuous Dynamical Systems  B, 2016, 21 (3) : 919941. doi: 10.3934/dcdsb.2016.21.919 
[5] 
Toyohiko Aiki, Adrian Muntean. On uniqueness of a weak solution of onedimensional concrete carbonation problem. Discrete & Continuous Dynamical Systems  A, 2011, 29 (4) : 13451365. doi: 10.3934/dcds.2011.29.1345 
[6] 
Chérif Amrouche, María Ángeles RodríguezBellido. On the very weak solution for the Oseen and NavierStokes equations. Discrete & Continuous Dynamical Systems  S, 2010, 3 (2) : 159183. doi: 10.3934/dcdss.2010.3.159 
[7] 
Zhong Tan, Jianfeng Zhou. Higher integrability of weak solution of a nonlinear problem arising in the electrorheological fluids. Communications on Pure & Applied Analysis, 2016, 15 (4) : 13351350. doi: 10.3934/cpaa.2016.15.1335 
[8] 
Tong Li, Anthony Suen. Existence of intermediate weak solution to the equations of multidimensional chemotaxis systems. Discrete & Continuous Dynamical Systems  A, 2016, 36 (2) : 861875. doi: 10.3934/dcds.2016.36.861 
[9] 
Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a threedimensional competing chemotaxis. Discrete & Continuous Dynamical Systems  A, 2018, 38 (8) : 38753898. doi: 10.3934/dcds.2018168 
[10] 
Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete & Continuous Dynamical Systems  B, 2011, 15 (2) : 357371. doi: 10.3934/dcdsb.2011.15.357 
[11] 
Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191219. doi: 10.3934/cpaa.2002.1.191 
[12] 
Liuyang Yuan, Zhongping Wan, Qiuhua Tang. A criterion for an approximation global optimal solution based on the filled functions. Journal of Industrial & Management Optimization, 2016, 12 (1) : 375387. doi: 10.3934/jimo.2016.12.375 
[13] 
ShinIchiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reactiondiffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191209. doi: 10.3934/nhm.2013.8.191 
[14] 
Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems  B, 2017, 22 (2) : 407419. doi: 10.3934/dcdsb.2017019 
[15] 
Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 118. doi: 10.3934/dcdsb.2019061 
[16] 
Chunhua Jin. Global classical solution and stability to a coupled chemotaxisfluid model with logistic source. Discrete & Continuous Dynamical Systems  A, 2018, 38 (7) : 35473566. doi: 10.3934/dcds.2018150 
[17] 
Zefu Feng, Changjiang Zhu. Global classical large solution to compressible viscous micropolar and heatconducting fluids with vacuum. Discrete & Continuous Dynamical Systems  A, 2019, 39 (6) : 30693097. doi: 10.3934/dcds.2019127 
[18] 
Jiří Neustupa. A note on local interior regularity of a suitable weak solution to the NavierStokes problem. Discrete & Continuous Dynamical Systems  S, 2013, 6 (5) : 13911400. doi: 10.3934/dcdss.2013.6.1391 
[19] 
Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the NavierStokes Cauchy problem. Discrete & Continuous Dynamical Systems  A, 2017, 37 (3) : 12831294. doi: 10.3934/dcds.2017053 
[20] 
Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete & Continuous Dynamical Systems  S, 2012, 5 (1) : 113. doi: 10.3934/dcdss.2012.5.1 
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]