March  2008, 7(2): 211-227. doi: 10.3934/cpaa.2008.7.211

Discrete Schrödinger equations and dissipative dynamical systems

1. 

Universite Cadi Ayyad, Faculte des Sciences et Techniques, Avenue Abdelkrim Khattabi, BP 549, Marrakech

2. 

Université Cadi Ayyad, Faculté des sciences et techniques, Gueliz, BP 549 Marrakech, Morocco

3. 

Laboratoire de Mathématiques Paul Painlevé, CNRS, UMR 8524, Bât. M2, Université de Lille 1, 59655 Villeneuve d'Ascq cedex, France

4. 

LAMFA CNRS UMR 6140, Université de Picardie Jules Verne, 33 rue Saint-Leu 80039 Amiens cedex, France

5. 

Universite de Picardie Jules Verne, LAMFA UMR 7352, 33 rue Saint-Leu, 80039 Amiens cedex

Received  February 2007 Revised  July 2007 Published  December 2007

We introduce a Crank-Nicolson scheme to study numerically the long-time behavior of solutions to a one dimensional damped forced nonlinear Schrödinger equation. We prove the existence of a smooth global attractor for these discretized equations. We also provide some numerical evidences of this asymptotical smoothing effect.
Citation: Mostafa Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont, Olivier Goubet. Discrete Schrödinger equations and dissipative dynamical systems. Communications on Pure & Applied Analysis, 2008, 7 (2) : 211-227. doi: 10.3934/cpaa.2008.7.211
[1]

Carolyn Mayer, Kathryn Haymaker, Christine A. Kelley. Channel decomposition for multilevel codes over multilevel and partial erasure channels. Advances in Mathematics of Communications, 2018, 12 (1) : 151-168. doi: 10.3934/amc.2018010

[2]

Rolf Bronstering. Some computational aspects of approximate inertial manifolds and finite differences. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 417-454. doi: 10.3934/dcds.1996.2.417

[3]

Keonhee Lee, Ngoc-Thach Nguyen, Yinong Yang. Topological stability and spectral decomposition for homeomorphisms on noncompact spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2487-2503. doi: 10.3934/dcds.2018103

[4]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[5]

Trygve K. Karper. Convergent finite differences for 1D viscous isentropic flow in Eulerian coordinates. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 993-1023. doi: 10.3934/dcdss.2014.7.993

[6]

Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297

[7]

Jinchao Xu. The single-grid multilevel method and its applications. Inverse Problems & Imaging, 2013, 7 (3) : 987-1005. doi: 10.3934/ipi.2013.7.987

[8]

Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

[9]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[10]

Angkana Rüland, Eva Sincich. Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data. Inverse Problems & Imaging, 2019, 13 (5) : 1023-1044. doi: 10.3934/ipi.2019046

[11]

Ka Kit Tung, Wendell Welch Orlando. On the differences between 2D and QG turbulence. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 145-162. doi: 10.3934/dcdsb.2003.3.145

[12]

Jingzhi Li, Hongyu Liu, Qi Wang. Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 547-561. doi: 10.3934/dcdss.2015.8.547

[13]

Paula Federico, Dobromir T. Dimitrov, Gary F. McCracken. Bat population dynamics: multilevel model based on individuals' energetics. Mathematical Biosciences & Engineering, 2008, 5 (4) : 743-756. doi: 10.3934/mbe.2008.5.743

[14]

Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3881-3903. doi: 10.3934/dcdsb.2018335

[15]

Siwei Yu, Jianwei Ma, Stanley Osher. Geometric mode decomposition. Inverse Problems & Imaging, 2018, 12 (4) : 831-852. doi: 10.3934/ipi.2018035

[16]

Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549

[17]

Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579

[18]

Mahdi Jalili. EEG-based functional brain networks: Hemispheric differences in males and females. Networks & Heterogeneous Media, 2015, 10 (1) : 223-232. doi: 10.3934/nhm.2015.10.223

[19]

Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo. A gradient algorithm for optimal control problems with model-reality differences. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 251-266. doi: 10.3934/naco.2015.5.251

[20]

Wei Qu, Siu-Long Lei, Seak-Weng Vong. A note on the stability of a second order finite difference scheme for space fractional diffusion equations. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 317-325. doi: 10.3934/naco.2014.4.317

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]