2009, 8(5): 1469-1492. doi: 10.3934/cpaa.2009.8.1469

Spectral properties of general advection operators and weighted translation semigroups

1. 

Laboratoire de Mathématiques, CNRS UMR 6620, Université Blaise Pascal (Clermont-Ferrand 2), 63177 Aubière Cedex

2. 

Université de Franche–Comté, Laboratoire de Mathématiques, CNRS UMR 6623, 16, route de Gray, 25030 Besançon Cedex, France, France

Received  July 2008 Revised  January 2009 Published  April 2009

We investigate the spectral properties of a class of weighted shift semigroups $(\mathcal{U}(t))_{t \geq 0}$ associated to abstract transport equations with a Lipschitz continuous vector field $\mathcal{F}$ and no--reentry boundary conditions. Generalizing the results of [25], we prove that the semigroup $(\mathcal{U}(t))_{t \geq 0}$ admits a canonical decomposition into three $C_0$-semigroups $(\mathcal{U}_1(t))_{t \geq 0}$, $(\mathcal{U}_2(t))_{t \geq 0}$ and $(\mathcal{U}_3(t))_{t \geq 0}$ with independent dynamics. A complete description of the spectra of the semigroups $(\mathcal{U}_i(t))_{t \geq 0}$ and their generators $\mathcal{T}_i$, $i=1,2$ is given. In particular, we prove that the spectrum of $\mathcal{T}_i$ is a left-half plane and that the Spectral Mapping Theorem holds: $\mathfrak{S}(\mathcal{U}_i(t))=\exp$ {$t \mathfrak{S}(\mathcal{T}_i)$}, $i=1,2$. Moreover, the semigroup $(\mathcal{U}_3(t))_{t \geq 0}$ extends to a $C_0$-group and its spectral properties are investigated by means of abstract results from positive semigroups theory. The properties of the flow associated to $\mathcal{F}$ are particularly relevant here and we investigate separately the cases of periodic and aperiodic flows. In particular, we show that, for periodic flow, the Spectral Mapping Theorem fails in general but $(\mathcal{U}_3(t))_{t \geq 0}$ and its generator $\mathcal{T}_3$ satisfy the so-called Annular Hull Theorem. We illustrate our results with various examples taken from collisionless kinetic theory.
Citation: Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469
[1]

Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179

[2]

Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165

[3]

Qiang Li. A kind of generalized transversality theorem for $C^r$ mapping with parameter. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1043-1050. doi: 10.3934/dcdss.2017055

[4]

Jan Boman. A local uniqueness theorem for weighted Radon transforms. Inverse Problems & Imaging, 2010, 4 (4) : 631-637. doi: 10.3934/ipi.2010.4.631

[5]

Mike Boyle, Sompong Chuysurichay. The mapping class group of a shift of finite type. Journal of Modern Dynamics, 2018, 13: 115-145. doi: 10.3934/jmd.2018014

[6]

Massimiliano Guzzo, Giancarlo Benettin. A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 1-28. doi: 10.3934/dcdsb.2001.1.1

[7]

Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549

[8]

Roman Romanov. Estimates of solutions of linear neutron transport equation at large time and spectral singularities. Kinetic & Related Models, 2012, 5 (1) : 113-128. doi: 10.3934/krm.2012.5.113

[9]

Miklós Horváth. Spectral shift functions in the fixed energy inverse scattering. Inverse Problems & Imaging, 2011, 5 (4) : 843-858. doi: 10.3934/ipi.2011.5.843

[10]

Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947

[11]

Pedro Teixeira. Dacorogna-Moser theorem on the Jacobian determinant equation with control of support. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4071-4089. doi: 10.3934/dcds.2017173

[12]

Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865

[13]

Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3573-3594. doi: 10.3934/dcdsb.2017215

[14]

Habibulla Akhadkulov, Akhtam Dzhalilov, Konstantin Khanin. Notes on a theorem of Katznelson and Ornstein. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4587-4609. doi: 10.3934/dcds.2017197

[15]

Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549

[16]

Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 517-532. doi: 10.3934/dcdss.2010.3.517

[17]

Rabah Amir, Igor V. Evstigneev. On Zermelo's theorem. Journal of Dynamics & Games, 2017, 4 (3) : 191-194. doi: 10.3934/jdg.2017011

[18]

John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367

[19]

Cristina Stoica. An approximation theorem in classical mechanics. Journal of Geometric Mechanics, 2016, 8 (3) : 359-374. doi: 10.3934/jgm.2016011

[20]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

[Back to Top]