# American Institute of Mathematical Sciences

• Previous Article
On the asymptotic behavior of elliptic, anisotropic singular perturbations problems
• CPAA Home
• This Issue
• Next Article
A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part II: Analysis of Convergence
January  2009, 8(1): 161-178. doi: 10.3934/cpaa.2009.8.161

## A Numerical Method for a Non-Smooth Advection-Diffusion Problem Arising in Sand Mechanics

 1 University of Houston, Department of Mathematics, 4800 Calhoun Rd, Houston, Texas 77204 - 3008, United States

Received  May 2008 Revised  August 2008 Published  October 2008

An operator-splitting algorithm is presented for the solution of a partial differential equation arising in the modeling of deposition processes in sand mechanics. Sand piles evolution is modeled by an advection-diffusion equation, with a non-smooth diffusion operator that contains a point-wise constraint on the gradient of the solution. Piecewise linear finite elements are used for the discretization in space. The advection operator is treated with a stabilized SUPG finite element method. An augmented Lagrangian method is proposed for the discretization of the fast/slow non-smooth diffusion operator. A penalization approach, together with a Newton method, is used for the treatment of inequality constraints. Numerical results are presented for the simulation of sand piles on flat and non-flat surfaces, and for extensions to water flows.
Citation: Alexandre Caboussat, Roland Glowinski. A Numerical Method for a Non-Smooth Advection-Diffusion Problem Arising in Sand Mechanics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 161-178. doi: 10.3934/cpaa.2009.8.161
 [1] Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019115 [2] Giuseppe Tomassetti. Smooth and non-smooth regularizations of the nonlinear diffusion equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1519-1537. doi: 10.3934/dcdss.2017078 [3] Luis Bayón, Jose Maria Grau, Maria del Mar Ruiz, Pedro Maria Suárez. A hydrothermal problem with non-smooth Lagrangian. Journal of Industrial & Management Optimization, 2014, 10 (3) : 761-776. doi: 10.3934/jimo.2014.10.761 [4] Yongqin Liu. The point-wise estimates of solutions for semi-linear dissipative wave equation. Communications on Pure & Applied Analysis, 2013, 12 (1) : 237-252. doi: 10.3934/cpaa.2013.12.237 [5] Jiao Chen, Weike Wang. The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 307-330. doi: 10.3934/cpaa.2014.13.307 [6] Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187 [7] Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155 [8] Chunlin Wu, Juyong Zhang, Xue-Cheng Tai. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Problems & Imaging, 2011, 5 (1) : 237-261. doi: 10.3934/ipi.2011.5.237 [9] Xihong Yan. An augmented Lagrangian-based parallel splitting method for a one-leader-two-follower game. Journal of Industrial & Management Optimization, 2016, 12 (3) : 879-890. doi: 10.3934/jimo.2016.12.879 [10] Yuan Shen, Wenxing Zhang, Bingsheng He. Relaxed augmented Lagrangian-based proximal point algorithms for convex optimization with linear constraints. Journal of Industrial & Management Optimization, 2014, 10 (3) : 743-759. doi: 10.3934/jimo.2014.10.743 [11] Li Jin, Hongying Huang. Differential equation method based on approximate augmented Lagrangian for nonlinear programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-15. doi: 10.3934/jimo.2019053 [12] Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59 [13] Constantin Christof, Christian Meyer, Stephan Walther, Christian Clason. Optimal control of a non-smooth semilinear elliptic equation. Mathematical Control & Related Fields, 2018, 8 (1) : 247-276. doi: 10.3934/mcrf.2018011 [14] Paul Glendinning. Non-smooth pitchfork bifurcations. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 457-464. doi: 10.3934/dcdsb.2004.4.457 [15] Laetitia Paoli. A proximal-like algorithm for vibro-impact problems with a non-smooth set of constraints. Conference Publications, 2011, 2011 (Special) : 1186-1195. doi: 10.3934/proc.2011.2011.1186 [16] Petteri Harjulehto, Peter Hästö, Juha Tiirola. Point-wise behavior of the Geman--McClure and the Hebert--Leahy image restoration models. Inverse Problems & Imaging, 2015, 9 (3) : 835-851. doi: 10.3934/ipi.2015.9.835 [17] Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279 [18] Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496 [19] Heung Wing Joseph Lee, Chi Kin Chan, Karho Yau, Kar Hung Wong, Colin Myburgh. Control parametrization and finite element method for controlling multi-species reactive transport in a circular pool. Journal of Industrial & Management Optimization, 2013, 9 (3) : 505-524. doi: 10.3934/jimo.2013.9.505 [20] Chao Zhang, Lihe Wang, Shulin Zhou, Yun-Ho Kim. Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2559-2587. doi: 10.3934/cpaa.2014.13.2559

2018 Impact Factor: 0.925