• Previous Article
    The Stefan problem with temperature-dependent thermal conductivity and a convective term with a convective condition at the fixed face
  • CPAA Home
  • This Issue
  • Next Article
    Materials with memory: Free energies & solution exponential decay
2010, 9(5): 1221-1234. doi: 10.3934/cpaa.2010.9.1221

Robin boundary condition on scale irregular fractals

1. 

Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università degli Studi di Roma “Sapienza”, Via A. Scarpa 16, 00161 Roma, Italy

Received  September 2009 Revised  November 2009 Published  May 2010

We consider mixed Dirichlet-Robin problems on scale irregular domains. In particular, we study the asymptotic convergence of the solutions of elliptic problems with Robin boundary conditions on the "prefractal" curves approximating the scale irregular fractals.
Citation: Raffaela Capitanelli. Robin boundary condition on scale irregular fractals. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1221-1234. doi: 10.3934/cpaa.2010.9.1221
[1]

Xiaohai Wan, Zhilin Li. Some new finite difference methods for Helmholtz equations on irregular domains or with interfaces. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1155-1174. doi: 10.3934/dcdsb.2012.17.1155

[2]

Luis Alvarez, Jesús Ildefonso Díaz. On the retention of the interfaces in some elliptic and parabolic nonlinear problems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 1-17. doi: 10.3934/dcds.2009.25.1

[3]

Nikolaos S. Papageorgiou, Patrick Winkert. Double resonance for Robin problems with indefinite and unbounded potential. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 323-344. doi: 10.3934/dcdss.2018018

[4]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[5]

Nikolaos S. Papageorgiou, Vicenšiu D. Rădulescu, Dušan D. Repovš. Robin problems with indefinite linear part and competition phenomena. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1293-1314. doi: 10.3934/cpaa.2017063

[6]

Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001

[7]

Vladimir P. Burskii, Alexei S. Zhedanov. On Dirichlet, Poncelet and Abel problems. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1587-1633. doi: 10.3934/cpaa.2013.12.1587

[8]

Maria Rosaria Lancia, Valerio Regis Durante, Paola Vernole. Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1493-1520. doi: 10.3934/dcdss.2016060

[9]

Zhanying Yang. Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method. Communications on Pure & Applied Analysis, 2014, 13 (1) : 249-272. doi: 10.3934/cpaa.2014.13.249

[10]

Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu. Nonlinear Dirichlet problems with double resonance. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1147-1168. doi: 10.3934/cpaa.2017056

[11]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Dirichlet problems with a crossing reaction. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2749-2766. doi: 10.3934/cpaa.2014.13.2749

[12]

Lucio Boccardo. Some Dirichlet problems with bad coercivity. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 319-329. doi: 10.3934/dcds.2002.8.319

[13]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6133-6166. doi: 10.3934/dcds.2016068

[14]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5003-5036. doi: 10.3934/dcds.2015.35.5003

[15]

Shouchuan Hu, Nikolaos S. Papageorgiou. Positive solutions for Robin problems with general potential and logistic reaction. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2489-2507. doi: 10.3934/cpaa.2016046

[16]

Sun-Sig Byun, Yumi Cho. Lorentz-Morrey regularity for nonlinear elliptic problems with irregular obstacles over Reifenberg flat domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4791-4804. doi: 10.3934/dcds.2015.35.4791

[17]

Roberta Filippucci, Chiara Lini. Existence of solutions for quasilinear Dirichlet problems with gradient terms. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 267-286. doi: 10.3934/dcdss.2019019

[18]

N. Arada, J.-P. Raymond. Time optimal problems with Dirichlet boundary controls. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1549-1570. doi: 10.3934/dcds.2003.9.1549

[19]

Alfonso Castro, Jorge Cossio, Carlos Vélez. Existence and qualitative properties of solutions for nonlinear Dirichlet problems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 123-140. doi: 10.3934/dcds.2013.33.123

[20]

Shouchuan Hu, Nikolaos S. Papageorgiou. Solutions of nonlinear nonhomogeneous Neumann and Dirichlet problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2889-2922. doi: 10.3934/cpaa.2013.12.2889

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]