2011, 10(4): 1121-1128. doi: 10.3934/cpaa.2011.10.1121

Remarks on some dispersive estimates

1. 

Department of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju 561-756, South Korea

2. 

Department of Applied Physics, Waseda University, Tokyo, 169-8555

3. 

School of Mathematics and System Sciences, Beihang University, Beijing 100191, China

Received  March 2010 Revised  October 2010 Published  April 2011

In this paper we consider the initial value problem for $i\partial_t u + \omega(|\nabla|) u = 0$. Under suitable smoothness and growth conditions on $\omega$, we derive dispersive estimates which is the generalization of time decay and Strichartz estimates. We unify and also simplify dispersive estimates by utilizing the Bessel function. Another main ingredient of this paper is to revisit oscillatory integrals of [2].
Citation: Yonggeun Cho, Tohru Ozawa, Suxia Xia. Remarks on some dispersive estimates. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1121-1128. doi: 10.3934/cpaa.2011.10.1121
References:
[1]

J. Bergh and J. Löfström, "Interpolation Spaces,", Springer-Verlag, (1976).

[2]

Y. Cho and T. Ozawa, On small amplitude solutions to the generalized Boussinesq equations,, Disctrete Cont. Dynam. Syst., 17 (2007), 691. doi: 10.3934/dcds.2007.17.691.

[3]

S. Gustafson, K. Nakanishi and T.-P. Tsai, Scattering for the Gross-Pitaevskii equation,, Math. Research Letters, 13 (2006), 273. doi: 10.1142/S0219199709003491.

[4]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math. \textbf{120} (1998), 120 (1998), 955. doi: 10.1353/ajm.1998.0039.

[5]

E. M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton Univ. Press, (1993).

show all references

References:
[1]

J. Bergh and J. Löfström, "Interpolation Spaces,", Springer-Verlag, (1976).

[2]

Y. Cho and T. Ozawa, On small amplitude solutions to the generalized Boussinesq equations,, Disctrete Cont. Dynam. Syst., 17 (2007), 691. doi: 10.3934/dcds.2007.17.691.

[3]

S. Gustafson, K. Nakanishi and T.-P. Tsai, Scattering for the Gross-Pitaevskii equation,, Math. Research Letters, 13 (2006), 273. doi: 10.1142/S0219199709003491.

[4]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math. \textbf{120} (1998), 120 (1998), 955. doi: 10.1353/ajm.1998.0039.

[5]

E. M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton Univ. Press, (1993).

[1]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387

[2]

Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46

[3]

Jerry L. Bona, Laihan Luo. More results on the decay of solutions to nonlinear, dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 151-193. doi: 10.3934/dcds.1995.1.151

[4]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

[5]

Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62

[6]

Min Chen, S. Dumont, Louis Dupaigne, Olivier Goubet. Decay of solutions to a water wave model with a nonlocal viscous dispersive term. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1473-1492. doi: 10.3934/dcds.2010.27.1473

[7]

Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469

[8]

Nakao Hayashi, Seishirou Kobayashi, Pavel I. Naumkin. Nonlinear dispersive wave equations in two space dimensions. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1377-1393. doi: 10.3934/cpaa.2015.14.1377

[9]

Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961

[10]

Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711

[11]

Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605

[12]

C. I. Christov, M. D. Todorov. Investigation of the long-time evolution of localized solutions of a dispersive wave system. Conference Publications, 2013, 2013 (special) : 139-148. doi: 10.3934/proc.2013.2013.139

[13]

Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253

[14]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[15]

Hongqiu Chen, Jerry L. Bona. Periodic traveling--wave solutions of nonlinear dispersive evolution equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4841-4873. doi: 10.3934/dcds.2013.33.4841

[16]

Jeremy L. Marzuola. Dispersive estimates using scattering theory for matrix Hamiltonian equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 995-1035. doi: 10.3934/dcds.2011.30.995

[17]

Jerry Bona, Jiahong Wu. Temporal growth and eventual periodicity for dispersive wave equations in a quarter plane. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1141-1168. doi: 10.3934/dcds.2009.23.1141

[18]

Wei Sun. On uniform estimate of complex elliptic equations on closed Hermitian manifolds. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1553-1570. doi: 10.3934/cpaa.2017074

[19]

Fabio Nicola. Remarks on dispersive estimates and curvature. Communications on Pure & Applied Analysis, 2007, 6 (1) : 203-212. doi: 10.3934/cpaa.2007.6.203

[20]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]