2011, 10(4): 1257-1266. doi: 10.3934/cpaa.2011.10.1257

On the similarity of Hamiltonian and reversible vector fields in 4D

1. 

Department of Mathematics, IMECC, Unicamp, 13083-970, Campinas SP, Brazil

2. 

Departamento de Matemática, Universidade Estadual de Campinas, Caixa Postal 6065, 13083-970, Campinas, S.P., Brazil

Received  July 2010 Revised  September 2010 Published  April 2011

We study the existence of formal conjugacies between reversible vector fields and Hamiltonian vector fields in 4D around a generic singularity. We construct conjugacies for a generic class of reversible vector fields. We also show that reversible vector fields are formally orbitally equivalent to polynomial decoupled Hamiltonian vector fields. The main tool we employ is the normal form theory.
Citation: Ricardo Miranda Martins, Marco Antonio Teixeira. On the similarity of Hamiltonian and reversible vector fields in 4D. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1257-1266. doi: 10.3934/cpaa.2011.10.1257
References:
[1]

R. Abraham and J. Marsden, "Foundations of Mechanics,", Benjamin Cummings, (1978).

[2]

V. I. Arnold, "Arnold's Problems,", Springer-Verlag, (2004).

[3]

V. I. Arnold, "Geometrical Methods in the Theory of Ordinary Differential Equations,'', Springer-Verlag, (1988).

[4]

G. D. Birkhoff, Dynamical systems with two degrees of freedom,, Trans. Amer. Math. Soc., 18 (1917), 199. doi: 10.2307/1988861.

[5]

R. L. Devaney, Reversible diffeomorphisms and flows,, Trans. Amer. Math. Soc., 218 (1976), 89. doi: 10.2307/1997429.

[6]

G. Gaeta, Normal Forms of reversible dynamical systems,, International Journal of Theoretical Physics, 33 (1994), 1917. doi: 10.1007/BF00671033.

[7]

A. Jacquemard, M. F. S. Lima and M. A. Teixeira, Degenerate resonances and branching of periodic orbits,, Annali di Matematica Pura ed Applicata, 187 (2008), 105.

[8]

J. S. W. Lamb, M. F. S. Lima, R. M. Martins, M. A. Teixeira and J. Yang, On the Hamiltonian structure of normal forms at elliptic equilibria of reversible vector fields in $R^4$,, IMECC/Unicamp Research Report 05/10, (2010).

[9]

J. C. van der Meer, J. A. Sanders and A. Vanderbauwhede, Hamiltonian Structure of the Reversible Nonsemisimple $1:1$ Resonance,, in, (1994), 221.

[10]

G. B. Price, On reversible dynamical systems,, Trans. Amer. Math. Soc., 37 (1935), 51. doi: 10.2307/1989695.

[11]

M. A. Teixeira, Singularities of reversible vector fields,, Phys. D, 100 (1997), 101. doi: 10.1016/S0167-2789(96)00183-2.

show all references

References:
[1]

R. Abraham and J. Marsden, "Foundations of Mechanics,", Benjamin Cummings, (1978).

[2]

V. I. Arnold, "Arnold's Problems,", Springer-Verlag, (2004).

[3]

V. I. Arnold, "Geometrical Methods in the Theory of Ordinary Differential Equations,'', Springer-Verlag, (1988).

[4]

G. D. Birkhoff, Dynamical systems with two degrees of freedom,, Trans. Amer. Math. Soc., 18 (1917), 199. doi: 10.2307/1988861.

[5]

R. L. Devaney, Reversible diffeomorphisms and flows,, Trans. Amer. Math. Soc., 218 (1976), 89. doi: 10.2307/1997429.

[6]

G. Gaeta, Normal Forms of reversible dynamical systems,, International Journal of Theoretical Physics, 33 (1994), 1917. doi: 10.1007/BF00671033.

[7]

A. Jacquemard, M. F. S. Lima and M. A. Teixeira, Degenerate resonances and branching of periodic orbits,, Annali di Matematica Pura ed Applicata, 187 (2008), 105.

[8]

J. S. W. Lamb, M. F. S. Lima, R. M. Martins, M. A. Teixeira and J. Yang, On the Hamiltonian structure of normal forms at elliptic equilibria of reversible vector fields in $R^4$,, IMECC/Unicamp Research Report 05/10, (2010).

[9]

J. C. van der Meer, J. A. Sanders and A. Vanderbauwhede, Hamiltonian Structure of the Reversible Nonsemisimple $1:1$ Resonance,, in, (1994), 221.

[10]

G. B. Price, On reversible dynamical systems,, Trans. Amer. Math. Soc., 37 (1935), 51. doi: 10.2307/1989695.

[11]

M. A. Teixeira, Singularities of reversible vector fields,, Phys. D, 100 (1997), 101. doi: 10.1016/S0167-2789(96)00183-2.

[1]

Franz W. Kamber and Peter W. Michor. The flow completion of a manifold with vector field. Electronic Research Announcements, 2000, 6: 95-97.

[2]

Tomasz Kaczynski, Marian Mrozek, Thomas Wanner. Towards a formal tie between combinatorial and classical vector field dynamics. Journal of Computational Dynamics, 2016, 3 (1) : 17-50. doi: 10.3934/jcd.2016002

[3]

Nikolay A. Gusev. On the one-dimensional continuity equation with a nearly incompressible vector field. Communications on Pure & Applied Analysis, 2019, 18 (2) : 559-568. doi: 10.3934/cpaa.2019028

[4]

Jaume Llibre, Ricardo Miranda Martins, Marco Antonio Teixeira. On the birth of minimal sets for perturbed reversible vector fields. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 763-777. doi: 10.3934/dcds.2011.31.763

[5]

Biao Ou. Examinations on a three-dimensional differentiable vector field that equals its own curl. Communications on Pure & Applied Analysis, 2003, 2 (2) : 251-257. doi: 10.3934/cpaa.2003.2.251

[6]

Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure & Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703

[7]

Katarzyna Grabowska. Lagrangian and Hamiltonian formalism in Field Theory: A simple model. Journal of Geometric Mechanics, 2010, 2 (4) : 375-395. doi: 10.3934/jgm.2010.2.375

[8]

Vincent Naudot, Jiazhong Yang. Finite smooth normal forms and integrability of local families of vector fields. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 667-682. doi: 10.3934/dcdss.2010.3.667

[9]

Tomas Johnson, Warwick Tucker. Automated computation of robust normal forms of planar analytic vector fields. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 769-782. doi: 10.3934/dcdsb.2009.12.769

[10]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[11]

Charles-Michel Marle. A property of conformally Hamiltonian vector fields; Application to the Kepler problem. Journal of Geometric Mechanics, 2012, 4 (2) : 181-206. doi: 10.3934/jgm.2012.4.181

[12]

Alberto Ibort, Amelia Spivak. Covariant Hamiltonian field theories on manifolds with boundary: Yang-Mills theories. Journal of Geometric Mechanics, 2017, 9 (1) : 47-82. doi: 10.3934/jgm.2017002

[13]

Claudio A. Buzzi, Jeroen S.W. Lamb. Reversible Hamiltonian Liapunov center theorem. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 51-66. doi: 10.3934/dcdsb.2005.5.51

[14]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[15]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[16]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[17]

Xavier Perrot, Xavier Carton. Point-vortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 971-995. doi: 10.3934/dcdsb.2009.11.971

[18]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[19]

Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481

[20]

Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3623-3638. doi: 10.3934/dcds.2016.36.3623

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

[Back to Top]