2011, 10(4): 1267-1279. doi: 10.3934/cpaa.2011.10.1267

Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system

1. 

Jiangsu Key Laboratory for NSLSCS, School of Mathematics Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China, China

Received  April 2010 Revised  November 2010 Published  April 2011

In this paper, we study the following system

$-\epsilon^2\Delta v+V(x)v+\psi(x)v=v^p, \quad x\in R^3,$

$-\Delta\psi=\frac{1}{\epsilon}v^2,\quad \lim_{|x|\rightarrow\infty}\psi(x)=0,\quad x\in R^3,$

where $\epsilon>0$, $p\in (3,5)$, $V$ is positive potential. We relate the number of solutions with topology of the set where $V$ attain their minimum value. By applying Ljusternik-Schnirelmann theory, we prove the multiplicity of solutions.

Citation: Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267
References:
[1]

C. O. Alves and S. H. M. Soares, Existence and concentration of positive solutions for a class of gradient systems,, Nonlinear Differ. Equ. Appl., 12 (2005), 437. doi: 10.1007/s00030-005-0021-8.

[2]

C. O. Alves, G. M. Figueiredo and M. F. Furtado, Multiplicity of solutions for elliptic systems via local mountain pass method,, Comm. Pure. Appl. Anal., 8 (2009), 1745. doi: 10.3934/cpaa.2009.8.1745.

[3]

C. O. Alves and G. M. Figueiredo, On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in $R^N$,, J. Differential Equations, 246 (2009), 1288. doi: 10.1016/j.jde.2008.08.004.

[4]

A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials,, Arch. Ration. Mech. Anal., 159 (2001), 253. doi: 10.1007/s002050100152.

[5]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations,, J. Math. Anal. Appl., 345 (2008), 90. doi: 10.1016/j.jmaa.2008.03.057.

[6]

A. Azzollini and A. Pomponio, A note on the ground state solutions for the nonlinear Schrödinger-Maxwell equations,, Boll. Unione Mat. Ital., 9 (2009), 93.

[7]

V. Benci and G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology,, Cal. Var. Partial Differential Equations, 2 (1994), 29. doi: 10.1007/BF01234314.

[8]

R. Benguria and H. Brezis, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules,, Comm. Math. Phys., 79 (1981), 167.

[9]

J. Byeon and Z. Q. Wang, Standing waves for nonlinear Schrödinger equations with singular potentials,, Ann. I. H. Poincar\'e-AN, 26 (2009), 943. doi: 10.1016/j.anihpc.2008.03.009.

[10]

S. Cingolani and M. Lazzo, Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations,, Topol. Methods Nonlinear Anal., 10 (1997), 1.

[11]

G. M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations,, Commun. Appl. Anal., 7 (2003), 417.

[12]

I. Catto and P. L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part 1: A necessary and sufficient condition for the stability of general molecular system,, Comm. Partial Differential Equations, 17 (1992), 1051. doi: 10.1080/03605309208820878.

[13]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations,, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893. doi: 10.1017/S030821050000353X.

[14]

I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials,, Advanced Nonlinear Studies, 8 (2008), 573.

[15]

I. Ianni and G. Vaira, Solutions of the Schrödinger-Poisson problem concentrating on spheres, I. Necessary conditions,, Math. Models Methods Appl. Sci., 19 (2009), 707. doi: 10.1142/S0218202509003589.

[16]

I. Ianni and G. Vaira, Solutions of the Schrödinger-Poisson problem concentrating on spheres, II. Existence,, Math. Models Methods Appl. Sci., 19 (2009), 877. doi: 10.1142/S0218202509003656.

[17]

P. L. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. II,, Ann. Inst. H. Poincare Anal. Non Lin\'eaire, 1 (1984), 223.

[18]

M. Del Pino and P. Felmer, Semiclassical states for nonlinear Schrödinger equations,, J. Funct. Anal., 149 (1997), 245.

[19]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term,, Journ. Func. Anal., 237 (2006), 655. doi: 10.1016/j.jfa.2006.04.005.

[20]

D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere,, Math. Models Methods Appl. Sci., 15 (2005), 141.

[21]

O. Sánchez and J. Soler, Long-time dynamics of the Schrödinger-Poisson-Slater system,, J. Statist. Phys., 114 (2004), 179. doi: 10.1023/B:JOSS.0000003109.97208.53.

[22]

M. Yang, Z. Shen and Y. Ding, Multiple semiclassical solutions for the nonlinear Maxwell-Schrödinger system,, Nonlinear Analysis, 71 (2009), 730. doi: 10.1016/j.na.2008.10.105.

[23]

H. Yin and P. Chang, Bound states of nonlinear Schrödinger equations with potentials tending to zero at infinity,, J. Differential Equations, 247 (2009), 618. doi: 10.1016/j.jde.2009.03.002.

[24]

L. Zhao and F. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent,, Nonlinear Analysis, 70 (2009), 2150. doi: 10.1016/j.na.2008.02.116.

show all references

References:
[1]

C. O. Alves and S. H. M. Soares, Existence and concentration of positive solutions for a class of gradient systems,, Nonlinear Differ. Equ. Appl., 12 (2005), 437. doi: 10.1007/s00030-005-0021-8.

[2]

C. O. Alves, G. M. Figueiredo and M. F. Furtado, Multiplicity of solutions for elliptic systems via local mountain pass method,, Comm. Pure. Appl. Anal., 8 (2009), 1745. doi: 10.3934/cpaa.2009.8.1745.

[3]

C. O. Alves and G. M. Figueiredo, On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in $R^N$,, J. Differential Equations, 246 (2009), 1288. doi: 10.1016/j.jde.2008.08.004.

[4]

A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials,, Arch. Ration. Mech. Anal., 159 (2001), 253. doi: 10.1007/s002050100152.

[5]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations,, J. Math. Anal. Appl., 345 (2008), 90. doi: 10.1016/j.jmaa.2008.03.057.

[6]

A. Azzollini and A. Pomponio, A note on the ground state solutions for the nonlinear Schrödinger-Maxwell equations,, Boll. Unione Mat. Ital., 9 (2009), 93.

[7]

V. Benci and G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology,, Cal. Var. Partial Differential Equations, 2 (1994), 29. doi: 10.1007/BF01234314.

[8]

R. Benguria and H. Brezis, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules,, Comm. Math. Phys., 79 (1981), 167.

[9]

J. Byeon and Z. Q. Wang, Standing waves for nonlinear Schrödinger equations with singular potentials,, Ann. I. H. Poincar\'e-AN, 26 (2009), 943. doi: 10.1016/j.anihpc.2008.03.009.

[10]

S. Cingolani and M. Lazzo, Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations,, Topol. Methods Nonlinear Anal., 10 (1997), 1.

[11]

G. M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations,, Commun. Appl. Anal., 7 (2003), 417.

[12]

I. Catto and P. L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part 1: A necessary and sufficient condition for the stability of general molecular system,, Comm. Partial Differential Equations, 17 (1992), 1051. doi: 10.1080/03605309208820878.

[13]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations,, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893. doi: 10.1017/S030821050000353X.

[14]

I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials,, Advanced Nonlinear Studies, 8 (2008), 573.

[15]

I. Ianni and G. Vaira, Solutions of the Schrödinger-Poisson problem concentrating on spheres, I. Necessary conditions,, Math. Models Methods Appl. Sci., 19 (2009), 707. doi: 10.1142/S0218202509003589.

[16]

I. Ianni and G. Vaira, Solutions of the Schrödinger-Poisson problem concentrating on spheres, II. Existence,, Math. Models Methods Appl. Sci., 19 (2009), 877. doi: 10.1142/S0218202509003656.

[17]

P. L. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. II,, Ann. Inst. H. Poincare Anal. Non Lin\'eaire, 1 (1984), 223.

[18]

M. Del Pino and P. Felmer, Semiclassical states for nonlinear Schrödinger equations,, J. Funct. Anal., 149 (1997), 245.

[19]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term,, Journ. Func. Anal., 237 (2006), 655. doi: 10.1016/j.jfa.2006.04.005.

[20]

D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere,, Math. Models Methods Appl. Sci., 15 (2005), 141.

[21]

O. Sánchez and J. Soler, Long-time dynamics of the Schrödinger-Poisson-Slater system,, J. Statist. Phys., 114 (2004), 179. doi: 10.1023/B:JOSS.0000003109.97208.53.

[22]

M. Yang, Z. Shen and Y. Ding, Multiple semiclassical solutions for the nonlinear Maxwell-Schrödinger system,, Nonlinear Analysis, 71 (2009), 730. doi: 10.1016/j.na.2008.10.105.

[23]

H. Yin and P. Chang, Bound states of nonlinear Schrödinger equations with potentials tending to zero at infinity,, J. Differential Equations, 247 (2009), 618. doi: 10.1016/j.jde.2009.03.002.

[24]

L. Zhao and F. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent,, Nonlinear Analysis, 70 (2009), 2150. doi: 10.1016/j.na.2008.02.116.

[1]

Pingzheng Zhang, Jianhua Sun. Clustered layers for the Schrödinger-Maxwell system on a ball. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 657-688. doi: 10.3934/dcds.2006.16.657

[2]

Giuseppe Maria Coclite, Helge Holden. Ground states of the Schrödinger-Maxwell system with dirac mass: Existence and asymptotics. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 117-132. doi: 10.3934/dcds.2010.27.117

[3]

Walter Dambrosio, Duccio Papini. Multiple homoclinic solutions for a one-dimensional Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1025-1038. doi: 10.3934/dcdss.2016040

[4]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[5]

Renata Bunoiu, Radu Precup, Csaba Varga. Multiple positive standing wave solutions for schrödinger equations with oscillating state-dependent potentials. Communications on Pure & Applied Analysis, 2017, 16 (3) : 953-972. doi: 10.3934/cpaa.2017046

[6]

Gan Lu, Weiming Liu. Multiple complex-valued solutions for the nonlinear Schrödinger equations involving magnetic potentials. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1957-1975. doi: 10.3934/cpaa.2017096

[7]

Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076

[8]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[9]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

[10]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[11]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094

[12]

Margherita Nolasco. Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1411-1419. doi: 10.3934/cpaa.2010.9.1411

[13]

Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263

[14]

Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071

[15]

Minbo Yang, Yanheng Ding. Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part. Communications on Pure & Applied Analysis, 2013, 12 (2) : 771-783. doi: 10.3934/cpaa.2013.12.771

[16]

Juncheng Wei, Wei Yao. Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1003-1011. doi: 10.3934/cpaa.2012.11.1003

[17]

Haidong Liu, Zhaoli Liu. Positive solutions of a nonlinear Schrödinger system with nonconstant potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1431-1464. doi: 10.3934/dcds.2016.36.1431

[18]

Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597

[19]

Seunghyeok Kim. On vector solutions for coupled nonlinear Schrödinger equations with critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1259-1277. doi: 10.3934/cpaa.2013.12.1259

[20]

Zuji Guo. Nodal solutions for nonlinear Schrödinger equations with decaying potential. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1125-1138. doi: 10.3934/cpaa.2016.15.1125

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]