\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation

Abstract / Introduction Related Papers Cited by
  • We prove global well-posedness for the cubic, defocusing, nonlinear Schrödinger equation on $R^2$ with data $u_0 \in H^s(R^2)$, $s > 1/4$. We accomplish this by improving the almost Morawetz estimates in [9].
    Mathematics Subject Classification: Primary: 35Q55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Bourgain, Refinements of Strichartz' inequality and applications to $2$D-NLS with critical nonlinearity, Internat. Math. Res. Notices, 5 (1998), 253-283.doi: doi:10.1155/S1073792898000191.

    [2]

    J. Bourgain, "Global Solutions Of Nonlinear Schrödinger Equations," American Mathematical Society, Providence, 1999.

    [3]

    T. Cazenave and F. B. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H^1$, Manuscripta Math., 61 (1988), 477-494.doi: doi:10.1007/BF01258601.

    [4]

    T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836.doi: doi:10.1016/0362-546X(90)90023-A.

    [5]

    J. Colliander, M. Grillakis and N. Tzirakis, Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on $R^2$, Int. Math. Res. Not. IMRN, 23 (2007), Art. ID rnm090, 30.

    [6]

    J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Math. Res. Lett., 9 (2002), 659-686.

    [7]

    J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $R^3$, Commun. Pure Appl. Anal., 57 (2004), 987-1014.doi: doi:10.1002/cpa.20029.

    [8]

    J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Resonant decompositions and the $I$-method for the cubic nonlinear Schrödinger equation on $\Bbb R^2$, Discrete Contin. Dyn. Syst., 21 (2008), 665-686.doi: doi:10.3934/dcds.2008.21.665.

    [9]

    J. Colliander and T. RoyBootstrapped Morawetz Estimates and Resonant Decomposition for Low Regularity Global solutions of Cubic NLS on $\mathbfR^{2}$, preprint, arXiv:0811.1803.

    [10]

    D. De Silva, N. Pavlović, G. Staffilani and N. Tzirakis, Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions, Commun. Pure Appl. Anal., 6 (2007), 1023-1041.doi: doi:10.3934/cpaa.2007.6.1023.

    [11]

    Y. F. Fang and M. G. Grillakis, On the global existence of rough solutions of the cubic defocusing Schrödinger equation in $ R^{2+1}$, J. Hyperbolic Differ. Equ., 4 (2007), 233-257.doi: doi:10.1142/S0219891607001161.

    [12]

    M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math, 120 (1998), 955-980.doi: doi:10.1353/ajm.1998.0039.

    [13]

    R. Killip, T. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, preprint, arXiv:0707.3188v2, Journal of the European Mathematical Society, 11 (2009) 1203-1258.doi: doi:10.4171/JEMS/180.

    [14]

    C. D. Sogge, "Fourier Integrals in Classical Analysis," Cambridge University Press, Cambridge, 1993.

    [15]

    E. M. Stein, "Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals," Princeton University Press, Princeton, NJ, 1993.

    [16]

    T. Tao, "Nonlinear Dispersive Equations," Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006.

    [17]

    M. E. Taylor, "Pseudodifferential Operators and Nonlinear PDE," Birkhäuser, Boston, 1991.

    [18]

    M. E. Taylor, "Partial Differential Equations I - III," Springer-Verlag, New York, 1996.

    [19]

    Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(84) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return