Citation: |
[1] |
J. Bourgain, Refinements of Strichartz' inequality and applications to $2$D-NLS with critical nonlinearity, Internat. Math. Res. Notices, 5 (1998), 253-283.doi: doi:10.1155/S1073792898000191. |
[2] |
J. Bourgain, "Global Solutions Of Nonlinear Schrödinger Equations," American Mathematical Society, Providence, 1999. |
[3] |
T. Cazenave and F. B. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H^1$, Manuscripta Math., 61 (1988), 477-494.doi: doi:10.1007/BF01258601. |
[4] |
T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836.doi: doi:10.1016/0362-546X(90)90023-A. |
[5] |
J. Colliander, M. Grillakis and N. Tzirakis, Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on $R^2$, Int. Math. Res. Not. IMRN, 23 (2007), Art. ID rnm090, 30. |
[6] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Math. Res. Lett., 9 (2002), 659-686. |
[7] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $R^3$, Commun. Pure Appl. Anal., 57 (2004), 987-1014.doi: doi:10.1002/cpa.20029. |
[8] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Resonant decompositions and the $I$-method for the cubic nonlinear Schrödinger equation on $\Bbb R^2$, Discrete Contin. Dyn. Syst., 21 (2008), 665-686.doi: doi:10.3934/dcds.2008.21.665. |
[9] |
J. Colliander and T. Roy, Bootstrapped Morawetz Estimates and Resonant Decomposition for Low Regularity Global solutions of Cubic NLS on $\mathbfR^{2}$, preprint, arXiv:0811.1803. |
[10] |
D. De Silva, N. Pavlović, G. Staffilani and N. Tzirakis, Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions, Commun. Pure Appl. Anal., 6 (2007), 1023-1041.doi: doi:10.3934/cpaa.2007.6.1023. |
[11] |
Y. F. Fang and M. G. Grillakis, On the global existence of rough solutions of the cubic defocusing Schrödinger equation in $ R^{2+1}$, J. Hyperbolic Differ. Equ., 4 (2007), 233-257.doi: doi:10.1142/S0219891607001161. |
[12] |
M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math, 120 (1998), 955-980.doi: doi:10.1353/ajm.1998.0039. |
[13] |
R. Killip, T. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, preprint, arXiv:0707.3188v2, Journal of the European Mathematical Society, 11 (2009) 1203-1258.doi: doi:10.4171/JEMS/180. |
[14] |
C. D. Sogge, "Fourier Integrals in Classical Analysis," Cambridge University Press, Cambridge, 1993. |
[15] |
E. M. Stein, "Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals," Princeton University Press, Princeton, NJ, 1993. |
[16] |
T. Tao, "Nonlinear Dispersive Equations," Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006. |
[17] |
M. E. Taylor, "Pseudodifferential Operators and Nonlinear PDE," Birkhäuser, Boston, 1991. |
[18] |
M. E. Taylor, "Partial Differential Equations I - III," Springer-Verlag, New York, 1996. |
[19] |
Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125. |