September  2011, 10(5): 1447-1462. doi: 10.3934/cpaa.2011.10.1447

Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam

1. 

Department of Mathematics and Statistics, Texas Tech University, Lubbock TX, 79409-1042

2. 

Department of Mathematical Sciences, George Mason University, Fairfax VA, 22030

Received  May 2009 Revised  November 2010 Published  April 2011

In this work we consider the dynamical response of a non-linear beam with viscous damping, perturbed in both the transverse and axial directions. The system is modeled using coupled non-linear momentum equations for the axial and transverse displacements. In particular we show that for a class of boundary conditions (beam clamped at the extremes) and uniformly distributed load, there exists a non-uniform equilibrium state. Different models of damping are considered: first, third and fifth order dissipation terms. We show that in all cases in the presence of the damping forces, the excited beam is stable near the equilibrium for any perturbation. An energy estimate approach is used in order to identify the space in which the solution of the perturbed system is stable.
Citation: Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1447-1462. doi: 10.3934/cpaa.2011.10.1447
References:
[1]

A. A. Alqaisia and M. N. Hamdan, Bifurcation and chaos of an immersed cantilever beam in a fluid and carrying an intermediate mass,, Journal of Sound and Vibration, 253 (2002), 859. doi: 10.1006/jsvi.2001.4072.

[2]

A. Andrianov and A. Hermans, A VELFP on infinite, finite and shallow water,, 17-th International workshop on water waves and floating bodies, (2002), 14.

[3]

E. Aulisa, A. Ibragimov, Y. Kaya and P. Seshaiyer, A stability estimate for fluid structure interaction problem with non-linear beam,, Accepted in the, ().

[4]

E. Aulisa, A. Cervone, S. Manservisi and P. Seshaiyer, A multilevel domain decomposition approach for studying coupled flow application,, Communications in Computational Physics, 6 (2009), 319. doi: 10.4208/cicp.2009.v6.p319.

[5]

E. Aulisa, S. Manservisi, and P. Seshaiyer, A computational domain decomposition approach for solving coupled flow-structure-thermal interaction problems,, Seventh Mississippi State - UAB Conference on Differential Equations and Computational Simulations. Electron. J. Diff. Eqns., (2009), 13.

[6]

E. Aulisa, S. Manservisi and P. Seshaiyer, A multilevel domain decomposition methodology for solving coupled problems in fluid-structure-thermal interaction,, Proceedings of ECCM 2006, (2006).

[7]

R. W. Dickey, Dynamic stability of equilibrium states of the extendible beam,, Proceedings of the American Mathematical Society, 41 (1973), 94. doi: 10.1090/S0002-9939-1973-0328290-8.

[8]

L. C. Evans, "Partial Differential Equations,", AMS, (1998).

[9]

D. A. Evensen, Nonlinear vibrations of beams with various boundary conditions,, AIAA Journal, 6 (1968), 370. doi: 10.2514/3.4506.

[10]

L. Ferguson, E. Aulisa, P. Seshaiyer, Computational modeling of highly flexible membrane wings in micro air vehicles,, Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, (2006).

[11]

D. G. Gorman, I. Trendafilova, A. J. Mulholland and J. Horacek, Analytical modeling and extraction of the modal behavior of a cantilever beam in fluid interaction,, Journal of Sound and Vibration, (2007), 231. doi: 10.1016/j.jsv.2007.07.032.

[12]

A. E. Green and J. E. Adkins, "Large Elastic Deformations,", Clarendon Press (Oxford), (1970).

[13]

H. W. Haslach, J. D. Humphrey, Dynamics of biological soft tissue or rubber: Internally pressurized spherical membranes surrounded by a fluid,, Int J Nonlin Mech, 39 (2004), 399.

[14]

J. D. Humphrey, "Cardiovascular Solid Mechanics,", Springer, (2002).

[15]

A. I. Ibragimov and P. Koola, The dynamics of wave carpet,, P. 2288, (2288).

[16]

R. A. Ibrahim, Nonlinear vibrations of suspended cables, Part III: Random excitation and interaction with fluid flow,, Applied Mechanics Reviews, 57 (2004), 515. doi: 10.1115/1.1804541.

[17]

J. E. Lagnese, Modelling and stabilization of nonlinear plates,, International Series of Numerical Mathematics, 100 (1991), 247.

[18]

C. L. Lou and D. L. Sikarskie, Nonlinear Vibration of beams using a form-function approximation,, ASME Journal of Applied Mechanics, 42 (1975), 209. doi: 10.1115/1.3423520.

[19]

C. Mei, Finite element displacement method for large amplitude free flexural vibrations of beams and plates,, Computers and Structures, 3 (1973), 163.

[20]

J. Padovan, Nonlinear vibrations of general structures,, Journal of Sound and Vibration, 72 (1980), 427.

[21]

J. Peradze, A numerical alghorithm for Kirchhoff-Type nonlinear static beam,, Journal of Applied Mathematics, (2009). doi: 10.1155/2009/818269.

[22]

J. N. Reddy, Finite element modeling of structural vibrations: A review of recent advances,, The Shock Vibration Digest, 11 (): 25.

[23]

J. N. Reddy, An introduction to Nonlinear Finite Element Analysis,, Oxford University, (2004). doi: 10.1093/acprof:oso/9780198525295.001.0001.

[24]

D. L. Russel, A comparison of certain dissipation mechanisms via decoupling and projection techniques,, Quart. Appl. Math., XLIX (1991), 373.

[25]

P. Seshaiyer and J. D. Humphrey, A sub-domain inverse finite element characterization of hyperelastic membranes, including soft tissues,, ASME J Biomech Engr., 125 (2003), 363. doi: 10.1115/1.1574333.

[26]

W. Shyy, Y. Lian, J. Tang, D. Viieru and H. Liu, Aerodynamics of Low Reynolds Number Flyers,, Cambridge University Press, (2007). doi: 10.1017/CBO9780511551154.

[27]

G. Singh, G. V. Rao and N. G. R. Iyengar, Reinvestigation of large amplitude free vibrations of beams using finite elements,, Journal of Sound and Vibration, 143 (1990), 351.

[28]

H. Wagner and V. Ramamurti, Beam vibrations-A review,, The Shock and Vibration Digest, 9 (1977), 17.

[29]

O. C. Zienkiewicz and R. L. Taylor, "The Finite Element Method,", McGraw-Hill, (1993).

show all references

References:
[1]

A. A. Alqaisia and M. N. Hamdan, Bifurcation and chaos of an immersed cantilever beam in a fluid and carrying an intermediate mass,, Journal of Sound and Vibration, 253 (2002), 859. doi: 10.1006/jsvi.2001.4072.

[2]

A. Andrianov and A. Hermans, A VELFP on infinite, finite and shallow water,, 17-th International workshop on water waves and floating bodies, (2002), 14.

[3]

E. Aulisa, A. Ibragimov, Y. Kaya and P. Seshaiyer, A stability estimate for fluid structure interaction problem with non-linear beam,, Accepted in the, ().

[4]

E. Aulisa, A. Cervone, S. Manservisi and P. Seshaiyer, A multilevel domain decomposition approach for studying coupled flow application,, Communications in Computational Physics, 6 (2009), 319. doi: 10.4208/cicp.2009.v6.p319.

[5]

E. Aulisa, S. Manservisi, and P. Seshaiyer, A computational domain decomposition approach for solving coupled flow-structure-thermal interaction problems,, Seventh Mississippi State - UAB Conference on Differential Equations and Computational Simulations. Electron. J. Diff. Eqns., (2009), 13.

[6]

E. Aulisa, S. Manservisi and P. Seshaiyer, A multilevel domain decomposition methodology for solving coupled problems in fluid-structure-thermal interaction,, Proceedings of ECCM 2006, (2006).

[7]

R. W. Dickey, Dynamic stability of equilibrium states of the extendible beam,, Proceedings of the American Mathematical Society, 41 (1973), 94. doi: 10.1090/S0002-9939-1973-0328290-8.

[8]

L. C. Evans, "Partial Differential Equations,", AMS, (1998).

[9]

D. A. Evensen, Nonlinear vibrations of beams with various boundary conditions,, AIAA Journal, 6 (1968), 370. doi: 10.2514/3.4506.

[10]

L. Ferguson, E. Aulisa, P. Seshaiyer, Computational modeling of highly flexible membrane wings in micro air vehicles,, Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, (2006).

[11]

D. G. Gorman, I. Trendafilova, A. J. Mulholland and J. Horacek, Analytical modeling and extraction of the modal behavior of a cantilever beam in fluid interaction,, Journal of Sound and Vibration, (2007), 231. doi: 10.1016/j.jsv.2007.07.032.

[12]

A. E. Green and J. E. Adkins, "Large Elastic Deformations,", Clarendon Press (Oxford), (1970).

[13]

H. W. Haslach, J. D. Humphrey, Dynamics of biological soft tissue or rubber: Internally pressurized spherical membranes surrounded by a fluid,, Int J Nonlin Mech, 39 (2004), 399.

[14]

J. D. Humphrey, "Cardiovascular Solid Mechanics,", Springer, (2002).

[15]

A. I. Ibragimov and P. Koola, The dynamics of wave carpet,, P. 2288, (2288).

[16]

R. A. Ibrahim, Nonlinear vibrations of suspended cables, Part III: Random excitation and interaction with fluid flow,, Applied Mechanics Reviews, 57 (2004), 515. doi: 10.1115/1.1804541.

[17]

J. E. Lagnese, Modelling and stabilization of nonlinear plates,, International Series of Numerical Mathematics, 100 (1991), 247.

[18]

C. L. Lou and D. L. Sikarskie, Nonlinear Vibration of beams using a form-function approximation,, ASME Journal of Applied Mechanics, 42 (1975), 209. doi: 10.1115/1.3423520.

[19]

C. Mei, Finite element displacement method for large amplitude free flexural vibrations of beams and plates,, Computers and Structures, 3 (1973), 163.

[20]

J. Padovan, Nonlinear vibrations of general structures,, Journal of Sound and Vibration, 72 (1980), 427.

[21]

J. Peradze, A numerical alghorithm for Kirchhoff-Type nonlinear static beam,, Journal of Applied Mathematics, (2009). doi: 10.1155/2009/818269.

[22]

J. N. Reddy, Finite element modeling of structural vibrations: A review of recent advances,, The Shock Vibration Digest, 11 (): 25.

[23]

J. N. Reddy, An introduction to Nonlinear Finite Element Analysis,, Oxford University, (2004). doi: 10.1093/acprof:oso/9780198525295.001.0001.

[24]

D. L. Russel, A comparison of certain dissipation mechanisms via decoupling and projection techniques,, Quart. Appl. Math., XLIX (1991), 373.

[25]

P. Seshaiyer and J. D. Humphrey, A sub-domain inverse finite element characterization of hyperelastic membranes, including soft tissues,, ASME J Biomech Engr., 125 (2003), 363. doi: 10.1115/1.1574333.

[26]

W. Shyy, Y. Lian, J. Tang, D. Viieru and H. Liu, Aerodynamics of Low Reynolds Number Flyers,, Cambridge University Press, (2007). doi: 10.1017/CBO9780511551154.

[27]

G. Singh, G. V. Rao and N. G. R. Iyengar, Reinvestigation of large amplitude free vibrations of beams using finite elements,, Journal of Sound and Vibration, 143 (1990), 351.

[28]

H. Wagner and V. Ramamurti, Beam vibrations-A review,, The Shock and Vibration Digest, 9 (1977), 17.

[29]

O. C. Zienkiewicz and R. L. Taylor, "The Finite Element Method,", McGraw-Hill, (1993).

[1]

Maja Miletić, Dominik Stürzer, Anton Arnold. An Euler-Bernoulli beam with nonlinear damping and a nonlinear spring at the tip. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3029-3055. doi: 10.3934/dcdsb.2015.20.3029

[2]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[3]

Denis Mercier. Spectrum analysis of a serially connected Euler-Bernoulli beams problem. Networks & Heterogeneous Media, 2009, 4 (4) : 709-730. doi: 10.3934/nhm.2009.4.709

[4]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Stability analysis of non-linear plates coupled with Darcy flows. Evolution Equations & Control Theory, 2013, 2 (2) : 193-232. doi: 10.3934/eect.2013.2.193

[5]

Kaïs Ammari, Denis Mercier, Virginie Régnier, Julie Valein. Spectral analysis and stabilization of a chain of serially connected Euler-Bernoulli beams and strings. Communications on Pure & Applied Analysis, 2012, 11 (2) : 785-807. doi: 10.3934/cpaa.2012.11.785

[6]

Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723

[7]

Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control & Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45

[8]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. FLUID STRUCTURE INTERACTION PROBLEM WITH CHANGING THICKNESS NON-LINEAR BEAM Fluid structure interaction problem with changing thickness non-linear beam. Conference Publications, 2011, 2011 (Special) : 813-823. doi: 10.3934/proc.2011.2011.813

[9]

Jong Yeoul Park, Sun Hye Park. On uniform decay for the coupled Euler-Bernoulli viscoelastic system with boundary damping. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 425-436. doi: 10.3934/dcds.2005.12.425

[10]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[11]

Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinetic & Related Models, 2014, 7 (4) : 713-737. doi: 10.3934/krm.2014.7.713

[12]

Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems & Imaging, 2018, 12 (1) : 91-123. doi: 10.3934/ipi.2018004

[13]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[14]

Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841

[15]

Christoph Walker. Age-dependent equations with non-linear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 691-712. doi: 10.3934/dcds.2010.26.691

[16]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[17]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[18]

Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315

[19]

Marcelo Moreira Cavalcanti. Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 675-695. doi: 10.3934/dcds.2002.8.675

[20]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

[Back to Top]