
Previous Article
Asymptotic dynamics of reversible cubic autocatalytic reactiondiffusion systems
 CPAA Home
 This Issue

Next Article
Global attractors of reactiondiffusion systems modeling food chain populations with delays
Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam
1.  Department of Mathematics and Statistics, Texas Tech University, Lubbock TX, 794091042 
2.  Department of Mathematical Sciences, George Mason University, Fairfax VA, 22030 
References:
[1] 
A. A. Alqaisia and M. N. Hamdan, Bifurcation and chaos of an immersed cantilever beam in a fluid and carrying an intermediate mass,, Journal of Sound and Vibration, 253 (2002), 859. doi: 10.1006/jsvi.2001.4072. 
[2] 
A. Andrianov and A. Hermans, A VELFP on infinite, finite and shallow water,, 17th International workshop on water waves and floating bodies, (2002), 14. 
[3] 
E. Aulisa, A. Ibragimov, Y. Kaya and P. Seshaiyer, A stability estimate for fluid structure interaction problem with nonlinear beam,, Accepted in the, (). 
[4] 
E. Aulisa, A. Cervone, S. Manservisi and P. Seshaiyer, A multilevel domain decomposition approach for studying coupled flow application,, Communications in Computational Physics, 6 (2009), 319. doi: 10.4208/cicp.2009.v6.p319. 
[5] 
E. Aulisa, S. Manservisi, and P. Seshaiyer, A computational domain decomposition approach for solving coupled flowstructurethermal interaction problems,, Seventh Mississippi State  UAB Conference on Differential Equations and Computational Simulations. Electron. J. Diff. Eqns., (2009), 13. 
[6] 
E. Aulisa, S. Manservisi and P. Seshaiyer, A multilevel domain decomposition methodology for solving coupled problems in fluidstructurethermal interaction,, Proceedings of ECCM 2006, (2006). 
[7] 
R. W. Dickey, Dynamic stability of equilibrium states of the extendible beam,, Proceedings of the American Mathematical Society, 41 (1973), 94. doi: 10.1090/S00029939197303282908. 
[8] 
L. C. Evans, "Partial Differential Equations,", AMS, (1998). 
[9] 
D. A. Evensen, Nonlinear vibrations of beams with various boundary conditions,, AIAA Journal, 6 (1968), 370. doi: 10.2514/3.4506. 
[10] 
L. Ferguson, E. Aulisa, P. Seshaiyer, Computational modeling of highly flexible membrane wings in micro air vehicles,, Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, (2006). 
[11] 
D. G. Gorman, I. Trendafilova, A. J. Mulholland and J. Horacek, Analytical modeling and extraction of the modal behavior of a cantilever beam in fluid interaction,, Journal of Sound and Vibration, (2007), 231. doi: 10.1016/j.jsv.2007.07.032. 
[12] 
A. E. Green and J. E. Adkins, "Large Elastic Deformations,", Clarendon Press (Oxford), (1970). 
[13] 
H. W. Haslach, J. D. Humphrey, Dynamics of biological soft tissue or rubber: Internally pressurized spherical membranes surrounded by a fluid,, Int J Nonlin Mech, 39 (2004), 399. 
[14] 
J. D. Humphrey, "Cardiovascular Solid Mechanics,", Springer, (2002). 
[15] 
A. I. Ibragimov and P. Koola, The dynamics of wave carpet,, P. 2288, (2288). 
[16] 
R. A. Ibrahim, Nonlinear vibrations of suspended cables, Part III: Random excitation and interaction with fluid flow,, Applied Mechanics Reviews, 57 (2004), 515. doi: 10.1115/1.1804541. 
[17] 
J. E. Lagnese, Modelling and stabilization of nonlinear plates,, International Series of Numerical Mathematics, 100 (1991), 247. 
[18] 
C. L. Lou and D. L. Sikarskie, Nonlinear Vibration of beams using a formfunction approximation,, ASME Journal of Applied Mechanics, 42 (1975), 209. doi: 10.1115/1.3423520. 
[19] 
C. Mei, Finite element displacement method for large amplitude free flexural vibrations of beams and plates,, Computers and Structures, 3 (1973), 163. 
[20] 
J. Padovan, Nonlinear vibrations of general structures,, Journal of Sound and Vibration, 72 (1980), 427. 
[21] 
J. Peradze, A numerical alghorithm for KirchhoffType nonlinear static beam,, Journal of Applied Mathematics, (2009). doi: 10.1155/2009/818269. 
[22] 
J. N. Reddy, Finite element modeling of structural vibrations: A review of recent advances,, The Shock Vibration Digest, 11 (): 25. 
[23] 
J. N. Reddy, An introduction to Nonlinear Finite Element Analysis,, Oxford University, (2004). doi: 10.1093/acprof:oso/9780198525295.001.0001. 
[24] 
D. L. Russel, A comparison of certain dissipation mechanisms via decoupling and projection techniques,, Quart. Appl. Math., XLIX (1991), 373. 
[25] 
P. Seshaiyer and J. D. Humphrey, A subdomain inverse finite element characterization of hyperelastic membranes, including soft tissues,, ASME J Biomech Engr., 125 (2003), 363. doi: 10.1115/1.1574333. 
[26] 
W. Shyy, Y. Lian, J. Tang, D. Viieru and H. Liu, Aerodynamics of Low Reynolds Number Flyers,, Cambridge University Press, (2007). doi: 10.1017/CBO9780511551154. 
[27] 
G. Singh, G. V. Rao and N. G. R. Iyengar, Reinvestigation of large amplitude free vibrations of beams using finite elements,, Journal of Sound and Vibration, 143 (1990), 351. 
[28] 
H. Wagner and V. Ramamurti, Beam vibrationsA review,, The Shock and Vibration Digest, 9 (1977), 17. 
[29] 
O. C. Zienkiewicz and R. L. Taylor, "The Finite Element Method,", McGrawHill, (1993). 
show all references
References:
[1] 
A. A. Alqaisia and M. N. Hamdan, Bifurcation and chaos of an immersed cantilever beam in a fluid and carrying an intermediate mass,, Journal of Sound and Vibration, 253 (2002), 859. doi: 10.1006/jsvi.2001.4072. 
[2] 
A. Andrianov and A. Hermans, A VELFP on infinite, finite and shallow water,, 17th International workshop on water waves and floating bodies, (2002), 14. 
[3] 
E. Aulisa, A. Ibragimov, Y. Kaya and P. Seshaiyer, A stability estimate for fluid structure interaction problem with nonlinear beam,, Accepted in the, (). 
[4] 
E. Aulisa, A. Cervone, S. Manservisi and P. Seshaiyer, A multilevel domain decomposition approach for studying coupled flow application,, Communications in Computational Physics, 6 (2009), 319. doi: 10.4208/cicp.2009.v6.p319. 
[5] 
E. Aulisa, S. Manservisi, and P. Seshaiyer, A computational domain decomposition approach for solving coupled flowstructurethermal interaction problems,, Seventh Mississippi State  UAB Conference on Differential Equations and Computational Simulations. Electron. J. Diff. Eqns., (2009), 13. 
[6] 
E. Aulisa, S. Manservisi and P. Seshaiyer, A multilevel domain decomposition methodology for solving coupled problems in fluidstructurethermal interaction,, Proceedings of ECCM 2006, (2006). 
[7] 
R. W. Dickey, Dynamic stability of equilibrium states of the extendible beam,, Proceedings of the American Mathematical Society, 41 (1973), 94. doi: 10.1090/S00029939197303282908. 
[8] 
L. C. Evans, "Partial Differential Equations,", AMS, (1998). 
[9] 
D. A. Evensen, Nonlinear vibrations of beams with various boundary conditions,, AIAA Journal, 6 (1968), 370. doi: 10.2514/3.4506. 
[10] 
L. Ferguson, E. Aulisa, P. Seshaiyer, Computational modeling of highly flexible membrane wings in micro air vehicles,, Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, (2006). 
[11] 
D. G. Gorman, I. Trendafilova, A. J. Mulholland and J. Horacek, Analytical modeling and extraction of the modal behavior of a cantilever beam in fluid interaction,, Journal of Sound and Vibration, (2007), 231. doi: 10.1016/j.jsv.2007.07.032. 
[12] 
A. E. Green and J. E. Adkins, "Large Elastic Deformations,", Clarendon Press (Oxford), (1970). 
[13] 
H. W. Haslach, J. D. Humphrey, Dynamics of biological soft tissue or rubber: Internally pressurized spherical membranes surrounded by a fluid,, Int J Nonlin Mech, 39 (2004), 399. 
[14] 
J. D. Humphrey, "Cardiovascular Solid Mechanics,", Springer, (2002). 
[15] 
A. I. Ibragimov and P. Koola, The dynamics of wave carpet,, P. 2288, (2288). 
[16] 
R. A. Ibrahim, Nonlinear vibrations of suspended cables, Part III: Random excitation and interaction with fluid flow,, Applied Mechanics Reviews, 57 (2004), 515. doi: 10.1115/1.1804541. 
[17] 
J. E. Lagnese, Modelling and stabilization of nonlinear plates,, International Series of Numerical Mathematics, 100 (1991), 247. 
[18] 
C. L. Lou and D. L. Sikarskie, Nonlinear Vibration of beams using a formfunction approximation,, ASME Journal of Applied Mechanics, 42 (1975), 209. doi: 10.1115/1.3423520. 
[19] 
C. Mei, Finite element displacement method for large amplitude free flexural vibrations of beams and plates,, Computers and Structures, 3 (1973), 163. 
[20] 
J. Padovan, Nonlinear vibrations of general structures,, Journal of Sound and Vibration, 72 (1980), 427. 
[21] 
J. Peradze, A numerical alghorithm for KirchhoffType nonlinear static beam,, Journal of Applied Mathematics, (2009). doi: 10.1155/2009/818269. 
[22] 
J. N. Reddy, Finite element modeling of structural vibrations: A review of recent advances,, The Shock Vibration Digest, 11 (): 25. 
[23] 
J. N. Reddy, An introduction to Nonlinear Finite Element Analysis,, Oxford University, (2004). doi: 10.1093/acprof:oso/9780198525295.001.0001. 
[24] 
D. L. Russel, A comparison of certain dissipation mechanisms via decoupling and projection techniques,, Quart. Appl. Math., XLIX (1991), 373. 
[25] 
P. Seshaiyer and J. D. Humphrey, A subdomain inverse finite element characterization of hyperelastic membranes, including soft tissues,, ASME J Biomech Engr., 125 (2003), 363. doi: 10.1115/1.1574333. 
[26] 
W. Shyy, Y. Lian, J. Tang, D. Viieru and H. Liu, Aerodynamics of Low Reynolds Number Flyers,, Cambridge University Press, (2007). doi: 10.1017/CBO9780511551154. 
[27] 
G. Singh, G. V. Rao and N. G. R. Iyengar, Reinvestigation of large amplitude free vibrations of beams using finite elements,, Journal of Sound and Vibration, 143 (1990), 351. 
[28] 
H. Wagner and V. Ramamurti, Beam vibrationsA review,, The Shock and Vibration Digest, 9 (1977), 17. 
[29] 
O. C. Zienkiewicz and R. L. Taylor, "The Finite Element Method,", McGrawHill, (1993). 
[1] 
Maja Miletić, Dominik Stürzer, Anton Arnold. An EulerBernoulli beam with nonlinear damping and a nonlinear spring at the tip. Discrete & Continuous Dynamical Systems  B, 2015, 20 (9) : 30293055. doi: 10.3934/dcdsb.2015.20.3029 
[2] 
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with nonlinear beam. Conference Publications, 2009, 2009 (Special) : 424432. doi: 10.3934/proc.2009.2009.424 
[3] 
Denis Mercier. Spectrum analysis of a serially connected EulerBernoulli beams problem. Networks & Heterogeneous Media, 2009, 4 (4) : 709730. doi: 10.3934/nhm.2009.4.709 
[4] 
Eugenio Aulisa, Akif Ibragimov, Emine Yasemen KayaCekin. Stability analysis of nonlinear plates coupled with Darcy flows. Evolution Equations & Control Theory, 2013, 2 (2) : 193232. doi: 10.3934/eect.2013.2.193 
[5] 
Kaïs Ammari, Denis Mercier, Virginie Régnier, Julie Valein. Spectral analysis and stabilization of a chain of serially connected EulerBernoulli beams and strings. Communications on Pure & Applied Analysis, 2012, 11 (2) : 785807. doi: 10.3934/cpaa.2012.11.785 
[6] 
Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a starshaped network of EulerBernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723747. doi: 10.3934/nhm.2008.3.723 
[7] 
Louis Tebou. Energy decay estimates for some weakly coupled EulerBernoulli and wave equations with indirect damping mechanisms. Mathematical Control & Related Fields, 2012, 2 (1) : 4560. doi: 10.3934/mcrf.2012.2.45 
[8] 
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. FLUID STRUCTURE INTERACTION PROBLEM WITH CHANGING THICKNESS NONLINEAR BEAM Fluid structure interaction problem with changing thickness nonlinear beam. Conference Publications, 2011, 2011 (Special) : 813823. doi: 10.3934/proc.2011.2011.813 
[9] 
Jong Yeoul Park, Sun Hye Park. On uniform decay for the coupled EulerBernoulli viscoelastic system with boundary damping. Discrete & Continuous Dynamical Systems  A, 2005, 12 (3) : 425436. doi: 10.3934/dcds.2005.12.425 
[10] 
Cyril Imbert, Sylvia Serfaty. Repeated games for nonlinear parabolic integrodifferential equations and integral curvature flows. Discrete & Continuous Dynamical Systems  A, 2011, 29 (4) : 15171552. doi: 10.3934/dcds.2011.29.1517 
[11] 
Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving nonlinear aggregationbreakage population balance equations. Kinetic & Related Models, 2014, 7 (4) : 713737. doi: 10.3934/krm.2014.7.713 
[12] 
Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and nonlinear conductivity equations. Inverse Problems & Imaging, 2018, 12 (1) : 91123. doi: 10.3934/ipi.2018004 
[13] 
Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems  A, 2011, 30 (1) : 115135. doi: 10.3934/dcds.2011.30.115 
[14] 
Pablo Ochoa. Approximation schemes for nonlinear second order equations on the Heisenberg group. Communications on Pure & Applied Analysis, 2015, 14 (5) : 18411863. doi: 10.3934/cpaa.2015.14.1841 
[15] 
Christoph Walker. Agedependent equations with nonlinear diffusion. Discrete & Continuous Dynamical Systems  A, 2010, 26 (2) : 691712. doi: 10.3934/dcds.2010.26.691 
[16] 
Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 10531065. doi: 10.3934/cpaa.2009.8.1053 
[17] 
Fathi Hassine. Asymptotic behavior of the transmission EulerBernoulli plate and wave equation with a localized KelvinVoigt damping. Discrete & Continuous Dynamical Systems  B, 2016, 21 (6) : 17571774. doi: 10.3934/dcdsb.2016021 
[18] 
Louis Tebou. Wellposedness and stabilization of an EulerBernoulli equation with a localized nonlinear dissipation involving the $p$Laplacian. Discrete & Continuous Dynamical Systems  A, 2012, 32 (6) : 23152337. doi: 10.3934/dcds.2012.32.2315 
[19] 
Marcelo Moreira Cavalcanti. Existence and uniform decay for the EulerBernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete & Continuous Dynamical Systems  A, 2002, 8 (3) : 675695. doi: 10.3934/dcds.2002.8.675 
[20] 
Herbert Koch. Partial differential equations with nonEuclidean geometries. Discrete & Continuous Dynamical Systems  S, 2008, 1 (3) : 481504. doi: 10.3934/dcdss.2008.1.481 
2017 Impact Factor: 0.884
Tools
Metrics
Other articles
by authors
[Back to Top]