
Previous Article
Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam
 CPAA Home
 This Issue

Next Article
On a mathematical model arising from competition of Phytoplankton species for a single nutrient with internal storage: steady state analysis
Global attractors of reactiondiffusion systems modeling food chain populations with delays
1.  Department of Mathematics and Statistics, UNC Wilmington, Wilmington, NC 28403 
2.  Department of mathematics, North Carolina State University, Raleigh, NC27695, United States 
3.  Department of Math and Stat. UNCW, 601 S. College Road, Wilmington NC 28403 
References:
show all references
References:
[1] 
Jing Liu, Xiaodong Liu, Sining Zheng, Yanping Lin. Positive steady state of a food chain system with diffusion. Conference Publications, 2007, 2007 (Special) : 667676. doi: 10.3934/proc.2007.2007.667 
[2] 
Yasuhisa Saito. A global stability result for an Nspecies LotkaVolterra food chain system with distributed time delays. Conference Publications, 2003, 2003 (Special) : 771777. doi: 10.3934/proc.2003.2003.771 
[3] 
Elvira Barbera, Giancarlo Consolo, Giovanna Valenti. A two or three compartments hyperbolic reactiondiffusion model for the aquatic food chain. Mathematical Biosciences & Engineering, 2015, 12 (3) : 451472. doi: 10.3934/mbe.2015.12.451 
[4] 
B. Ambrosio, M. A. AzizAlaoui, V. L. E. Phan. Global attractor of complex networks of reactiondiffusion systems of FitzhughNagumo type. Discrete & Continuous Dynamical Systems  B, 2018, 23 (9) : 37873797. doi: 10.3934/dcdsb.2018077 
[5] 
Lijuan Wang, Hongling Jiang, Ying Li. Positive steady state solutions of a plantpollinator model with diffusion. Discrete & Continuous Dynamical Systems  B, 2015, 20 (6) : 18051819. doi: 10.3934/dcdsb.2015.20.1805 
[6] 
Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reactiondiffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 3959. doi: 10.3934/eect.2015.4.39 
[7] 
Maria Paola Cassinari, Maria Groppi, Claudio Tebaldi. Effects of predation efficiencies on the dynamics of a tritrophic food chain. Mathematical Biosciences & Engineering, 2007, 4 (3) : 431456. doi: 10.3934/mbe.2007.4.431 
[8] 
ChingShan Chou, YongTao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reactiondiffusion systems. Discrete & Continuous Dynamical Systems  B, 2007, 7 (3) : 515525. doi: 10.3934/dcdsb.2007.7.515 
[9] 
Xinfu Chen, KingYeung Lam, Yuan Lou. Corrigendum: Dynamics of a reactiondiffusionadvection model for two competing species. Discrete & Continuous Dynamical Systems  A, 2014, 34 (11) : 49894995. doi: 10.3934/dcds.2014.34.4989 
[10] 
Xinfu Chen, KingYeung Lam, Yuan Lou. Dynamics of a reactiondiffusionadvection model for two competing species. Discrete & Continuous Dynamical Systems  A, 2012, 32 (11) : 38413859. doi: 10.3934/dcds.2012.32.3841 
[11] 
A. Dall'Acqua. Positive solutions for a class of reactiondiffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 6576. doi: 10.3934/cpaa.2003.2.65 
[12] 
Boris Andreianov, Halima Labani. Preconditioning operators and $L^\infty$ attractor for a class of reactiondiffusion systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 21792199. doi: 10.3934/cpaa.2012.11.2179 
[13] 
Suqing Lin, Zhengyi Lu. Permanence for twospecies LotkaVolterra systems with delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 137144. doi: 10.3934/mbe.2006.3.137 
[14] 
Guichen Lu, Zhengyi Lu. Permanence for twospecies LotkaVolterra cooperative systems with delays. Mathematical Biosciences & Engineering, 2008, 5 (3) : 477484. doi: 10.3934/mbe.2008.5.477 
[15] 
Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of noncooperative reactiondiffusion systems with nonlocal infections. Discrete & Continuous Dynamical Systems  B, 2018, 23 (8) : 32133235. doi: 10.3934/dcdsb.2018242 
[16] 
Carlos Escudero, Fabricio Macià, Raúl Toral, Juan J. L. Velázquez. Kinetic theory and numerical simulations of twospecies coagulation. Kinetic & Related Models, 2014, 7 (2) : 253290. doi: 10.3934/krm.2014.7.253 
[17] 
Andrei Korobeinikov, William T. Lee. Global asymptotic properties for a LeslieGower food chain model. Mathematical Biosciences & Engineering, 2009, 6 (3) : 585590. doi: 10.3934/mbe.2009.6.585 
[18] 
Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steadystate hotspot patterns for a reactiondiffusion model of urban crime. Discrete & Continuous Dynamical Systems  B, 2014, 19 (5) : 13731410. doi: 10.3934/dcdsb.2014.19.1373 
[19] 
Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reactiondiffusion pelagicbenthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 23252347. doi: 10.3934/cpaa.2019105 
[20] 
Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reactiondiffusion equation with nonsmooth nonlinear term. Discrete & Continuous Dynamical Systems  A, 2014, 34 (10) : 41554182. doi: 10.3934/dcds.2014.34.4155 
2017 Impact Factor: 0.884
Tools
Metrics
Other articles
by authors
[Back to Top]