March  2011, 10(2): 527-540. doi: 10.3934/cpaa.2011.10.527

Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Received  January 2010 Revised  July 2010 Published  December 2010

In this paper, we consider the following semilinear elliptic equations with critical Hardy-Sobolev exponent:

$ -\Delta u+\lambda\frac{u}{|x-a|^2}-\gamma\frac{u}{|x|^2} =\frac{Q(x)}{|x|^s}|u|^{2^*(s)-2}u+g(x,u), u>0$ in $\Omega,$

$ \frac{\partial u}{\partial\nu}+\alpha(x)u=0 $ on $\partial\Omega. $

By variational method, the existence of positive solution is obtained.

Citation: Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527
References:
[1]

Adimurthi and S. L. Yadava, Critical Sobolev exponent problem in $\R^N$ $(N\geq 4)$ with Neumann boundary condition,, Proc. Indian Acad. Sci., 100 (1990), 275. Google Scholar

[2]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486. doi: doi:10.2307/2044999. Google Scholar

[3]

J. Chabrowski, On the Neumann problem with the Hardy-Sobolev potential,, Ann. Mat. Pura Appl., 186 (2007), 703. doi: doi:10.1007/s10231-006-0027-9. Google Scholar

[4]

J. Chabrowski, The Neumann problem for semilinear elliptic equations with critical Sobolev exponent,, Milan Journal of Mathematics, 75 (2007), 197. doi: doi:10.1007/s00032-006-0065-1. Google Scholar

[5]

J. Chabrowski, On the nonlinear Neumann problem involving the critical Sobolev exponent and Hardy potential,, Rev. Mat. Complut., 17 (2004), 195. Google Scholar

[6]

J. Chabrowski, On a critical Neumann problem with a perturbation of lower order,, Acta Mathematicae Applicatae Sinica, 24 (2008), 441. doi: doi:10.1007/s10255-008-8038-5. Google Scholar

[7]

D. Cao and J. Chabrowski, Critical Neumann problem with competing Hardy potentials,, Rev. Mat. Complut., 20 (2007), 309. Google Scholar

[8]

D. Cao and P. Han, Solutions to critical elliptic equations with multi-singular inverse square potentials,, J. Differential Equations, 224 (2006), 332. doi: doi:10.1016/j.jde.2005.07.010. Google Scholar

[9]

D. Cao and P. Han, A note on the positive energy solutions for elliptic equations involving critical Sobolev exponent,, Appl. Math. Lett., 16 (2003), 1105. doi: doi:10.1016/S0893-9659(03)90102-9. Google Scholar

[10]

J. Chabrowski and M. Willem, Least energy solutions of a critical Neumann problem with a weight,, Calc. Var. Partial Differential Equations, 15 (2002), 421. doi: doi:10.1007/s00526-002-0101-0. Google Scholar

[11]

Y. B. Deng and L. Y. Jin, Multiple positive solutions for a quasilinear nonhomogeneous Neumann problems with critical Hardy exponents,, Nonlinear Anal., 67 (2007), 3261. doi: doi:10.1016/j.na.2006.07.051. Google Scholar

[12]

Y. B. Deng, L. Y. Jin and S. J. Peng, A Robin boundary problem with Hardy potential and critical nonlinearities,, Journal d'Analyse Math\'ematique, 104 (2008), 125. Google Scholar

[13]

L. Ding and C. L. Tang, Hardy-Sobolev critical singular elliptic equations with mixed Dirichlet-Neumann boundary conditions,, Nonlinear Anal., 71 (2009), 3668. doi: doi:10.1016/j.na.2009.02.017. Google Scholar

[14]

V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity,, Comm. Partial Differential Equations, 31 (2006), 469. doi: doi:10.1080/03605300500394439. Google Scholar

[15]

N. Ghoussoub and X. S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities,, Ann. Inst. H. Poincar'e Anal. Non Linaire, 21 (2004), 767. doi: doi:10.1016/j.anihpc.2003.07.002. Google Scholar

[16]

P. G. Han and Z. X. Liu, Positive solutions for elliptic equations involving critical Sobolev exponents and Hardy terms with Neumann boundary conditions,, Nonlinear Anal., 55 (2003), 167. doi: doi:10.1016/S0362-546X(03)00223-2. Google Scholar

[17]

C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, J. Differential Equations, 72 (1988), 1. doi: doi:10.1016/0022-0396(88)90147-7. Google Scholar

[18]

W. M. Ni and I. Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type,, Trans. Amer. Math. Soc., 297 (1986), 351. doi: doi:10.1090/S0002-9947-1986-0849484-2. Google Scholar

[19]

M. Struwe, "Variational Methods," 2nd, edition, (1996). Google Scholar

[20]

Y. Y. Shang and C. L. Tang, Positive solutions for Neumann elliptic problems involving critical Hardy-Sobolev exponent with boundary singularities,, Nonlinear Anal., 70 (2009), 1302. doi: doi:10.1016/j.na.2008.02.013. Google Scholar

[21]

X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents,, J. Differential Equations, 93 (1991), 283. doi: doi:10.1016/0022-0396(91)90014-Z. Google Scholar

show all references

References:
[1]

Adimurthi and S. L. Yadava, Critical Sobolev exponent problem in $\R^N$ $(N\geq 4)$ with Neumann boundary condition,, Proc. Indian Acad. Sci., 100 (1990), 275. Google Scholar

[2]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486. doi: doi:10.2307/2044999. Google Scholar

[3]

J. Chabrowski, On the Neumann problem with the Hardy-Sobolev potential,, Ann. Mat. Pura Appl., 186 (2007), 703. doi: doi:10.1007/s10231-006-0027-9. Google Scholar

[4]

J. Chabrowski, The Neumann problem for semilinear elliptic equations with critical Sobolev exponent,, Milan Journal of Mathematics, 75 (2007), 197. doi: doi:10.1007/s00032-006-0065-1. Google Scholar

[5]

J. Chabrowski, On the nonlinear Neumann problem involving the critical Sobolev exponent and Hardy potential,, Rev. Mat. Complut., 17 (2004), 195. Google Scholar

[6]

J. Chabrowski, On a critical Neumann problem with a perturbation of lower order,, Acta Mathematicae Applicatae Sinica, 24 (2008), 441. doi: doi:10.1007/s10255-008-8038-5. Google Scholar

[7]

D. Cao and J. Chabrowski, Critical Neumann problem with competing Hardy potentials,, Rev. Mat. Complut., 20 (2007), 309. Google Scholar

[8]

D. Cao and P. Han, Solutions to critical elliptic equations with multi-singular inverse square potentials,, J. Differential Equations, 224 (2006), 332. doi: doi:10.1016/j.jde.2005.07.010. Google Scholar

[9]

D. Cao and P. Han, A note on the positive energy solutions for elliptic equations involving critical Sobolev exponent,, Appl. Math. Lett., 16 (2003), 1105. doi: doi:10.1016/S0893-9659(03)90102-9. Google Scholar

[10]

J. Chabrowski and M. Willem, Least energy solutions of a critical Neumann problem with a weight,, Calc. Var. Partial Differential Equations, 15 (2002), 421. doi: doi:10.1007/s00526-002-0101-0. Google Scholar

[11]

Y. B. Deng and L. Y. Jin, Multiple positive solutions for a quasilinear nonhomogeneous Neumann problems with critical Hardy exponents,, Nonlinear Anal., 67 (2007), 3261. doi: doi:10.1016/j.na.2006.07.051. Google Scholar

[12]

Y. B. Deng, L. Y. Jin and S. J. Peng, A Robin boundary problem with Hardy potential and critical nonlinearities,, Journal d'Analyse Math\'ematique, 104 (2008), 125. Google Scholar

[13]

L. Ding and C. L. Tang, Hardy-Sobolev critical singular elliptic equations with mixed Dirichlet-Neumann boundary conditions,, Nonlinear Anal., 71 (2009), 3668. doi: doi:10.1016/j.na.2009.02.017. Google Scholar

[14]

V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity,, Comm. Partial Differential Equations, 31 (2006), 469. doi: doi:10.1080/03605300500394439. Google Scholar

[15]

N. Ghoussoub and X. S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities,, Ann. Inst. H. Poincar'e Anal. Non Linaire, 21 (2004), 767. doi: doi:10.1016/j.anihpc.2003.07.002. Google Scholar

[16]

P. G. Han and Z. X. Liu, Positive solutions for elliptic equations involving critical Sobolev exponents and Hardy terms with Neumann boundary conditions,, Nonlinear Anal., 55 (2003), 167. doi: doi:10.1016/S0362-546X(03)00223-2. Google Scholar

[17]

C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, J. Differential Equations, 72 (1988), 1. doi: doi:10.1016/0022-0396(88)90147-7. Google Scholar

[18]

W. M. Ni and I. Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type,, Trans. Amer. Math. Soc., 297 (1986), 351. doi: doi:10.1090/S0002-9947-1986-0849484-2. Google Scholar

[19]

M. Struwe, "Variational Methods," 2nd, edition, (1996). Google Scholar

[20]

Y. Y. Shang and C. L. Tang, Positive solutions for Neumann elliptic problems involving critical Hardy-Sobolev exponent with boundary singularities,, Nonlinear Anal., 70 (2009), 1302. doi: doi:10.1016/j.na.2008.02.013. Google Scholar

[21]

X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents,, J. Differential Equations, 93 (1991), 283. doi: doi:10.1016/0022-0396(91)90014-Z. Google Scholar

[1]

Masato Hashizume, Chun-Hsiung Hsia, Gyeongha Hwang. On the Neumann problem of Hardy-Sobolev critical equations with the multiple singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 301-322. doi: 10.3934/cpaa.2019016

[2]

Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure & Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191

[3]

Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123

[4]

Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033

[5]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[6]

Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

[7]

Guoqing Zhang, Jia-yu Shao, Sanyang Liu. Linking solutions for N-laplace elliptic equations with Hardy-Sobolev operator and indefinite weights. Communications on Pure & Applied Analysis, 2011, 10 (2) : 571-581. doi: 10.3934/cpaa.2011.10.571

[8]

Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061

[9]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[10]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[11]

Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211

[12]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[13]

T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875

[14]

Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007

[15]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[16]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[17]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[18]

Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439

[19]

Chunhua Wang, Jing Yang. Infinitely many solutions for an elliptic problem with double critical Hardy-Sobolev-Maz'ya terms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1603-1628. doi: 10.3934/dcds.2016.36.1603

[20]

Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure & Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]