2011, 10(2): 527-540. doi: 10.3934/cpaa.2011.10.527

Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Received  January 2010 Revised  July 2010 Published  December 2010

In this paper, we consider the following semilinear elliptic equations with critical Hardy-Sobolev exponent:

$ -\Delta u+\lambda\frac{u}{|x-a|^2}-\gamma\frac{u}{|x|^2} =\frac{Q(x)}{|x|^s}|u|^{2^*(s)-2}u+g(x,u), u>0$ in $\Omega,$

$ \frac{\partial u}{\partial\nu}+\alpha(x)u=0 $ on $\partial\Omega. $

By variational method, the existence of positive solution is obtained.

Citation: Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527
References:
[1]

Adimurthi and S. L. Yadava, Critical Sobolev exponent problem in $\R^N$ $(N\geq 4)$ with Neumann boundary condition,, Proc. Indian Acad. Sci., 100 (1990), 275.

[2]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486. doi: doi:10.2307/2044999.

[3]

J. Chabrowski, On the Neumann problem with the Hardy-Sobolev potential,, Ann. Mat. Pura Appl., 186 (2007), 703. doi: doi:10.1007/s10231-006-0027-9.

[4]

J. Chabrowski, The Neumann problem for semilinear elliptic equations with critical Sobolev exponent,, Milan Journal of Mathematics, 75 (2007), 197. doi: doi:10.1007/s00032-006-0065-1.

[5]

J. Chabrowski, On the nonlinear Neumann problem involving the critical Sobolev exponent and Hardy potential,, Rev. Mat. Complut., 17 (2004), 195.

[6]

J. Chabrowski, On a critical Neumann problem with a perturbation of lower order,, Acta Mathematicae Applicatae Sinica, 24 (2008), 441. doi: doi:10.1007/s10255-008-8038-5.

[7]

D. Cao and J. Chabrowski, Critical Neumann problem with competing Hardy potentials,, Rev. Mat. Complut., 20 (2007), 309.

[8]

D. Cao and P. Han, Solutions to critical elliptic equations with multi-singular inverse square potentials,, J. Differential Equations, 224 (2006), 332. doi: doi:10.1016/j.jde.2005.07.010.

[9]

D. Cao and P. Han, A note on the positive energy solutions for elliptic equations involving critical Sobolev exponent,, Appl. Math. Lett., 16 (2003), 1105. doi: doi:10.1016/S0893-9659(03)90102-9.

[10]

J. Chabrowski and M. Willem, Least energy solutions of a critical Neumann problem with a weight,, Calc. Var. Partial Differential Equations, 15 (2002), 421. doi: doi:10.1007/s00526-002-0101-0.

[11]

Y. B. Deng and L. Y. Jin, Multiple positive solutions for a quasilinear nonhomogeneous Neumann problems with critical Hardy exponents,, Nonlinear Anal., 67 (2007), 3261. doi: doi:10.1016/j.na.2006.07.051.

[12]

Y. B. Deng, L. Y. Jin and S. J. Peng, A Robin boundary problem with Hardy potential and critical nonlinearities,, Journal d'Analyse Math\'ematique, 104 (2008), 125.

[13]

L. Ding and C. L. Tang, Hardy-Sobolev critical singular elliptic equations with mixed Dirichlet-Neumann boundary conditions,, Nonlinear Anal., 71 (2009), 3668. doi: doi:10.1016/j.na.2009.02.017.

[14]

V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity,, Comm. Partial Differential Equations, 31 (2006), 469. doi: doi:10.1080/03605300500394439.

[15]

N. Ghoussoub and X. S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities,, Ann. Inst. H. Poincar'e Anal. Non Linaire, 21 (2004), 767. doi: doi:10.1016/j.anihpc.2003.07.002.

[16]

P. G. Han and Z. X. Liu, Positive solutions for elliptic equations involving critical Sobolev exponents and Hardy terms with Neumann boundary conditions,, Nonlinear Anal., 55 (2003), 167. doi: doi:10.1016/S0362-546X(03)00223-2.

[17]

C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, J. Differential Equations, 72 (1988), 1. doi: doi:10.1016/0022-0396(88)90147-7.

[18]

W. M. Ni and I. Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type,, Trans. Amer. Math. Soc., 297 (1986), 351. doi: doi:10.1090/S0002-9947-1986-0849484-2.

[19]

M. Struwe, "Variational Methods," 2nd, edition, (1996).

[20]

Y. Y. Shang and C. L. Tang, Positive solutions for Neumann elliptic problems involving critical Hardy-Sobolev exponent with boundary singularities,, Nonlinear Anal., 70 (2009), 1302. doi: doi:10.1016/j.na.2008.02.013.

[21]

X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents,, J. Differential Equations, 93 (1991), 283. doi: doi:10.1016/0022-0396(91)90014-Z.

show all references

References:
[1]

Adimurthi and S. L. Yadava, Critical Sobolev exponent problem in $\R^N$ $(N\geq 4)$ with Neumann boundary condition,, Proc. Indian Acad. Sci., 100 (1990), 275.

[2]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486. doi: doi:10.2307/2044999.

[3]

J. Chabrowski, On the Neumann problem with the Hardy-Sobolev potential,, Ann. Mat. Pura Appl., 186 (2007), 703. doi: doi:10.1007/s10231-006-0027-9.

[4]

J. Chabrowski, The Neumann problem for semilinear elliptic equations with critical Sobolev exponent,, Milan Journal of Mathematics, 75 (2007), 197. doi: doi:10.1007/s00032-006-0065-1.

[5]

J. Chabrowski, On the nonlinear Neumann problem involving the critical Sobolev exponent and Hardy potential,, Rev. Mat. Complut., 17 (2004), 195.

[6]

J. Chabrowski, On a critical Neumann problem with a perturbation of lower order,, Acta Mathematicae Applicatae Sinica, 24 (2008), 441. doi: doi:10.1007/s10255-008-8038-5.

[7]

D. Cao and J. Chabrowski, Critical Neumann problem with competing Hardy potentials,, Rev. Mat. Complut., 20 (2007), 309.

[8]

D. Cao and P. Han, Solutions to critical elliptic equations with multi-singular inverse square potentials,, J. Differential Equations, 224 (2006), 332. doi: doi:10.1016/j.jde.2005.07.010.

[9]

D. Cao and P. Han, A note on the positive energy solutions for elliptic equations involving critical Sobolev exponent,, Appl. Math. Lett., 16 (2003), 1105. doi: doi:10.1016/S0893-9659(03)90102-9.

[10]

J. Chabrowski and M. Willem, Least energy solutions of a critical Neumann problem with a weight,, Calc. Var. Partial Differential Equations, 15 (2002), 421. doi: doi:10.1007/s00526-002-0101-0.

[11]

Y. B. Deng and L. Y. Jin, Multiple positive solutions for a quasilinear nonhomogeneous Neumann problems with critical Hardy exponents,, Nonlinear Anal., 67 (2007), 3261. doi: doi:10.1016/j.na.2006.07.051.

[12]

Y. B. Deng, L. Y. Jin and S. J. Peng, A Robin boundary problem with Hardy potential and critical nonlinearities,, Journal d'Analyse Math\'ematique, 104 (2008), 125.

[13]

L. Ding and C. L. Tang, Hardy-Sobolev critical singular elliptic equations with mixed Dirichlet-Neumann boundary conditions,, Nonlinear Anal., 71 (2009), 3668. doi: doi:10.1016/j.na.2009.02.017.

[14]

V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity,, Comm. Partial Differential Equations, 31 (2006), 469. doi: doi:10.1080/03605300500394439.

[15]

N. Ghoussoub and X. S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities,, Ann. Inst. H. Poincar'e Anal. Non Linaire, 21 (2004), 767. doi: doi:10.1016/j.anihpc.2003.07.002.

[16]

P. G. Han and Z. X. Liu, Positive solutions for elliptic equations involving critical Sobolev exponents and Hardy terms with Neumann boundary conditions,, Nonlinear Anal., 55 (2003), 167. doi: doi:10.1016/S0362-546X(03)00223-2.

[17]

C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, J. Differential Equations, 72 (1988), 1. doi: doi:10.1016/0022-0396(88)90147-7.

[18]

W. M. Ni and I. Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type,, Trans. Amer. Math. Soc., 297 (1986), 351. doi: doi:10.1090/S0002-9947-1986-0849484-2.

[19]

M. Struwe, "Variational Methods," 2nd, edition, (1996).

[20]

Y. Y. Shang and C. L. Tang, Positive solutions for Neumann elliptic problems involving critical Hardy-Sobolev exponent with boundary singularities,, Nonlinear Anal., 70 (2009), 1302. doi: doi:10.1016/j.na.2008.02.013.

[21]

X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents,, J. Differential Equations, 93 (1991), 283. doi: doi:10.1016/0022-0396(91)90014-Z.

[1]

Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure & Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191

[2]

Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123

[3]

Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033

[4]

Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

[5]

Guoqing Zhang, Jia-yu Shao, Sanyang Liu. Linking solutions for N-laplace elliptic equations with Hardy-Sobolev operator and indefinite weights. Communications on Pure & Applied Analysis, 2011, 10 (2) : 571-581. doi: 10.3934/cpaa.2011.10.571

[6]

Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061

[7]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[8]

Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211

[9]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[10]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[11]

T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875

[12]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[13]

Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007

[14]

Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439

[15]

Chunhua Wang, Jing Yang. Infinitely many solutions for an elliptic problem with double critical Hardy-Sobolev-Maz'ya terms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1603-1628. doi: 10.3934/dcds.2016.36.1603

[16]

M. L. Miotto. Multiple solutions for elliptic problem in $\mathbb{R}^N$ with critical Sobolev exponent and weight function. Communications on Pure & Applied Analysis, 2010, 9 (1) : 233-248. doi: 10.3934/cpaa.2010.9.233

[17]

Y. Kabeya. Behaviors of solutions to a scalar-field equation involving the critical Sobolev exponent with the Robin condition. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 117-134. doi: 10.3934/dcds.2006.14.117

[18]

Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907

[19]

Michinori Ishiwata. Existence of a stable set for some nonlinear parabolic equation involving critical Sobolev exponent. Conference Publications, 2005, 2005 (Special) : 443-452. doi: 10.3934/proc.2005.2005.443

[20]

M. Ben Ayed, Abdelbaki Selmi. Asymptotic behavior and existence results for a biharmonic equation involving the critical Sobolev exponent in a five-dimensional domain. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1705-1722. doi: 10.3934/cpaa.2010.9.1705

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]