2011, 10(2): 653-665. doi: 10.3934/cpaa.2011.10.653

Global wellposedness for a transport equation with super-critial dissipation

1. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Received  May 2010 Revised  October 2010 Published  December 2010

We study a one-dimensional transport equation with non-local velocity and supercritial dissipation. Using the methods of modulus of continuity introduced in [1] and fractional Laplacian representaiton introduced in [2], we prove its global well-posedness for small periodic initial data in Holder spaces.
Citation: Xumin Gu. Global wellposedness for a transport equation with super-critial dissipation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 653-665. doi: 10.3934/cpaa.2011.10.653
References:
[1]

A. Kiselev, F. nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation,, Invent. Mathe., 167 (2007), 445. doi: doi:10.1007/s00222-006-0020-3.

[2]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, preprint, ().

[3]

P. Constantin, P. D. Lax and A. Majda, A simple one-dimensional model for the three-dimensional vorticity equation,, Comm. Pure Appl. Math., 38 (1985), 715. doi: doi:10.1002/cpa.3160380605.

[4]

P. Constantin, A. Majda and E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar,, Nonlinearity, 7 (1994), 1495. doi: doi:10.1088/0951-7715/7/6/001.

[5]

D. Córdoba, Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation,, Ann. of Math., 148 (1998), 1135. doi: doi:10.2307/121037.

[6]

K. Y. Wang, Global well-posedness for a transport equation with non-local velocity and critical diffusion,, Commun. Pure Appl. Anal., 7 (2008), 1203. doi: doi:10.3934/cpaa.2008.7.1203.

[7]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Phys., 249 (2004), 511.

[8]

H. Okamoto, T. Sakajo and M. Wunsch, On a generalization of the Constantin-Lax-Majda equation,, Nonlinearity, 21 (2008), 2447. doi: doi:10.1088/0951-7715/21/10/013.

[9]

X. W. Yu, Remarks on the global regularity for the super-critical 2D dissipative quasi-geostrophic equation,, J. Math. Anal. Appl., 339 (2008), 359. doi: doi:10.1016/j.jmaa.2007.06.064.

[10]

G. R. Baker, X. Li and A. C. Morlet, Analytic structure of two 1D-transport equations with nonlocal fluxes,, Physica D: Nonlinear Phenomena, 91 (1996), 349. doi: doi:10.1016/0167-2789(95)00271-5.

[11]

A. Córdoba, D. Córdoba and M. A. Fontelos, Integral inequalities for the Hilbert transform applied to a nonlocal transport equation,, J. Math. Pures Appl., 86 (2006), 529. doi: doi:10.1016/j.matpur.2006.08.002.

[12]

A. Córdoba, D. Córdoba and M. A. Fontelos, Formation of singularities for a transport equation with nonlocal velocity,, Ann. of Math., 162 (2005), 1377. doi: doi:10.4007/annals.2005.162.1377.

show all references

References:
[1]

A. Kiselev, F. nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation,, Invent. Mathe., 167 (2007), 445. doi: doi:10.1007/s00222-006-0020-3.

[2]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, preprint, ().

[3]

P. Constantin, P. D. Lax and A. Majda, A simple one-dimensional model for the three-dimensional vorticity equation,, Comm. Pure Appl. Math., 38 (1985), 715. doi: doi:10.1002/cpa.3160380605.

[4]

P. Constantin, A. Majda and E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar,, Nonlinearity, 7 (1994), 1495. doi: doi:10.1088/0951-7715/7/6/001.

[5]

D. Córdoba, Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation,, Ann. of Math., 148 (1998), 1135. doi: doi:10.2307/121037.

[6]

K. Y. Wang, Global well-posedness for a transport equation with non-local velocity and critical diffusion,, Commun. Pure Appl. Anal., 7 (2008), 1203. doi: doi:10.3934/cpaa.2008.7.1203.

[7]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Phys., 249 (2004), 511.

[8]

H. Okamoto, T. Sakajo and M. Wunsch, On a generalization of the Constantin-Lax-Majda equation,, Nonlinearity, 21 (2008), 2447. doi: doi:10.1088/0951-7715/21/10/013.

[9]

X. W. Yu, Remarks on the global regularity for the super-critical 2D dissipative quasi-geostrophic equation,, J. Math. Anal. Appl., 339 (2008), 359. doi: doi:10.1016/j.jmaa.2007.06.064.

[10]

G. R. Baker, X. Li and A. C. Morlet, Analytic structure of two 1D-transport equations with nonlocal fluxes,, Physica D: Nonlinear Phenomena, 91 (1996), 349. doi: doi:10.1016/0167-2789(95)00271-5.

[11]

A. Córdoba, D. Córdoba and M. A. Fontelos, Integral inequalities for the Hilbert transform applied to a nonlocal transport equation,, J. Math. Pures Appl., 86 (2006), 529. doi: doi:10.1016/j.matpur.2006.08.002.

[12]

A. Córdoba, D. Córdoba and M. A. Fontelos, Formation of singularities for a transport equation with nonlocal velocity,, Ann. of Math., 162 (2005), 1377. doi: doi:10.4007/annals.2005.162.1377.

[1]

A. M. Micheletti, Monica Musso, A. Pistoia. Super-position of spikes for a slightly super-critical elliptic equation in $R^N$. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 747-760. doi: 10.3934/dcds.2005.12.747

[2]

Patrick Martinez, Jean-Michel Roquejoffre. The rate of attraction of super-critical waves in a Fisher-KPP type model with shear flow. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2445-2472. doi: 10.3934/cpaa.2012.11.2445

[3]

Lorena Bociu, Petronela Radu, Daniel Toundykov. Errata: Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations & Control Theory, 2014, 3 (2) : 349-354. doi: 10.3934/eect.2014.3.349

[4]

Lorena Bociu, Petronela Radu, Daniel Toundykov. Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations & Control Theory, 2013, 2 (2) : 255-279. doi: 10.3934/eect.2013.2.255

[5]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[6]

De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431

[7]

Hugo Beirão da Veiga, Francesca Crispo. On the global regularity for nonlinear systems of the $p$-Laplacian type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1173-1191. doi: 10.3934/dcdss.2013.6.1173

[8]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[9]

Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469

[10]

Quansen Jiu, Jitao Liu. Global regularity for the 3D axisymmetric MHD Equations with horizontal dissipation and vertical magnetic diffusion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 301-322. doi: 10.3934/dcds.2015.35.301

[11]

Shuguang Shao, Shu Wang, Wen-Qing Xu. Global regularity for a model of Navier-Stokes equations with logarithmic sub-dissipation. Kinetic & Related Models, 2018, 11 (1) : 179-190. doi: 10.3934/krm.2018009

[12]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[13]

Carlos Lizama, Luz Roncal. Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1365-1403. doi: 10.3934/dcds.2018056

[14]

Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure & Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008

[15]

Wenru Huo, Aimin Huang. The global attractor of the 2d Boussinesq equations with fractional Laplacian in subcritical case. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2531-2550. doi: 10.3934/dcdsb.2016059

[16]

Kangsheng Liu, Xu Liu, Bopeng Rao. Eventual regularity of a wave equation with boundary dissipation . Mathematical Control & Related Fields, 2012, 2 (1) : 17-28. doi: 10.3934/mcrf.2012.2.17

[17]

Yanqin Fang, De Tang. Method of sub-super solutions for fractional elliptic equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-13. doi: 10.3934/dcdsb.2017212

[18]

Boris Hasselblatt. Critical regularity of invariant foliations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 931-937. doi: 10.3934/dcds.2002.8.931

[19]

Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905

[20]

Michele Coti Zelati, Piotr Kalita. Smooth attractors for weak solutions of the SQG equation with critical dissipation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1857-1873. doi: 10.3934/dcdsb.2017110

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]