May  2011, 10(3): 847-857. doi: 10.3934/cpaa.2011.10.847

Topological conjugacy for affine-linear flows and control systems

1. 

Institut für Mathematik, Universität Augsburg, 86135 Augsburg

2. 

Departamento de Matemática, Universidade Estadual de Maringá, Maringá-PR, 87020-900, Brazil

Received  March 2009 Revised  September 2009 Published  December 2010

Hyperbolic affine-linear flows on vector bundles possess unique bounded solutions on the real line. Hence they are topologically skew conjugate to their linear parts. This is used to show a classification of inhomogeneous bilinear control systems.
Citation: Fritz Colonius, Alexandre J. Santana. Topological conjugacy for affine-linear flows and control systems. Communications on Pure & Applied Analysis, 2011, 10 (3) : 847-857. doi: 10.3934/cpaa.2011.10.847
References:
[1]

A. A. Agrachev and Y. L. Sachkov, "Control Theory from a Geometric Viewpoint,", Springer-Verlag, (2004). Google Scholar

[2]

B. Aulbach and T. Wanner, Integral manifolds for Carathéodory type differential equations in Banach spaces,, in, (1996), 45. Google Scholar

[3]

V. Ayala, F. Colonius and W. Kliemann, On topological equivalence of linear flows with applications to bilinear control systems,, J. Dynamical and Control Systems, 13 (2007), 337. doi: doi:10.1007/s10883-007-9021-9. Google Scholar

[4]

L. Baratchart, M. Chyba and J.-P. Pomet, A Grobman-Hartman theorem for control systems,, J. Dynamics and Differential Equations, 19 (2007), 95. Google Scholar

[5]

F. Colonius and W. Kliemann, "The Dynamics of Control,", Birkh\, (2000). Google Scholar

[6]

Nguyen Dinh Cong, "Topological Dynamics of Random Dynamical Systems,", Oxford Math. Monogr., (1997). Google Scholar

[7]

D. L. Elliott, "Bilinear Control Systems. Matrices in Action,", Applied Mathematical Sciences, 169 (2009). Google Scholar

[8]

C. Robinson, "Dynamical Systems. Stability, Symbolic Dynamics, and Chaos,", CRC Press, (1999). Google Scholar

show all references

References:
[1]

A. A. Agrachev and Y. L. Sachkov, "Control Theory from a Geometric Viewpoint,", Springer-Verlag, (2004). Google Scholar

[2]

B. Aulbach and T. Wanner, Integral manifolds for Carathéodory type differential equations in Banach spaces,, in, (1996), 45. Google Scholar

[3]

V. Ayala, F. Colonius and W. Kliemann, On topological equivalence of linear flows with applications to bilinear control systems,, J. Dynamical and Control Systems, 13 (2007), 337. doi: doi:10.1007/s10883-007-9021-9. Google Scholar

[4]

L. Baratchart, M. Chyba and J.-P. Pomet, A Grobman-Hartman theorem for control systems,, J. Dynamics and Differential Equations, 19 (2007), 95. Google Scholar

[5]

F. Colonius and W. Kliemann, "The Dynamics of Control,", Birkh\, (2000). Google Scholar

[6]

Nguyen Dinh Cong, "Topological Dynamics of Random Dynamical Systems,", Oxford Math. Monogr., (1997). Google Scholar

[7]

D. L. Elliott, "Bilinear Control Systems. Matrices in Action,", Applied Mathematical Sciences, 169 (2009). Google Scholar

[8]

C. Robinson, "Dynamical Systems. Stability, Symbolic Dynamics, and Chaos,", CRC Press, (1999). Google Scholar

[1]

Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144

[2]

Ming-Chia Li, Ming-Jiea Lyu. Topological conjugacy for Lipschitz perturbations of non-autonomous systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5011-5024. doi: 10.3934/dcds.2016017

[3]

Álvaro Castañeda, Gonzalo Robledo. Dichotomy spectrum and almost topological conjugacy on nonautonomus unbounded difference systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2287-2304. doi: 10.3934/dcds.2018094

[4]

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial & Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737

[5]

Vadim Azhmyakov, Alex Poznyak, Omar Gonzalez. On the robust control design for a class of nonlinearly affine control systems: The attractive ellipsoid approach. Journal of Industrial & Management Optimization, 2013, 9 (3) : 579-593. doi: 10.3934/jimo.2013.9.579

[6]

Wolfgang Krieger, Kengo Matsumoto. Markov-Dyck shifts, neutral periodic points and topological conjugacy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 1-18. doi: 10.3934/dcds.2019001

[7]

Elena Goncharova, Maxim Staritsyn. On BV-extension of asymptotically constrained control-affine systems and complementarity problem for measure differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1061-1070. doi: 10.3934/dcdss.2018061

[8]

El Hassan Zerrik, Nihale El Boukhari. Optimal bounded controls problem for bilinear systems. Evolution Equations & Control Theory, 2015, 4 (2) : 221-232. doi: 10.3934/eect.2015.4.221

[9]

Livio Flaminio, Giovanni Forni, Federico Rodriguez Hertz. Invariant distributions for homogeneous flows and affine transformations. Journal of Modern Dynamics, 2016, 10: 33-79. doi: 10.3934/jmd.2016.10.33

[10]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[11]

Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275

[12]

Magdi S. Mahmoud, Mohammed M. Hussain. Control design of linear systems with saturating actuators: A survey. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 413-435. doi: 10.3934/naco.2012.2.413

[13]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[14]

Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889

[15]

Artyom Nahapetyan, Panos M. Pardalos. A bilinear relaxation based algorithm for concave piecewise linear network flow problems. Journal of Industrial & Management Optimization, 2007, 3 (1) : 71-85. doi: 10.3934/jimo.2007.3.71

[16]

Tobias Breiten, Karl Kunisch, Laurent Pfeiffer. Numerical study of polynomial feedback laws for a bilinear control problem. Mathematical Control & Related Fields, 2018, 8 (3&4) : 557-582. doi: 10.3934/mcrf.2018023

[17]

Josep M. Olm, Xavier Ros-Oton. Approximate tracking of periodic references in a class of bilinear systems via stable inversion. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 197-215. doi: 10.3934/dcdsb.2011.15.197

[18]

Andrii Mironchenko, Hiroshi Ito. Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions. Mathematical Control & Related Fields, 2016, 6 (3) : 447-466. doi: 10.3934/mcrf.2016011

[19]

Alexander Gorodnik, Frédéric Paulin. Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows. Journal of Modern Dynamics, 2014, 8 (1) : 25-59. doi: 10.3934/jmd.2014.8.25

[20]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]