2012, 11(5): 1897-1910. doi: 10.3934/cpaa.2012.11.1897

Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients

1. 

Department of Mathematics, Saitama University, 255 Shimo-Okubo, Urawa, Saitama 338-8570

2. 

School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332-0160

Received  March 2011 Revised  June 2011 Published  March 2012

We establish local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic partial differential equations with unbounded ingredients.
Citation: Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897
References:
[1]

M. E. Amendola, L. Rossi and A. Vitolo, Harnack inequalities and ABP estimates for nonlinear second-order elliptic equations in unbounded domains,, Abstr. Appl. Anal., (2008).

[2]

X. Cabré, On the Alexandroff-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations,, Comm. Pure Appl. Math., 48 (1995), 539. doi: 10.1002/cpa.3160480504.

[3]

L. A. Caffarelli, Interior a priori estimates for solutions of fully non-linear equations,, Ann. Math., 130 (1989), 189. doi: 10.2307/1971480.

[4]

L. A. Caffarelli and X. Cabré, "Fully Nonlinear Elliptic Equations,'', American Mathematical Society, (1995).

[5]

L. A. Caffarelli, M. G. Crandall, M. Kocan and A. Świech, On viscosity solutions of fully nonlinear equations with measurable ingredients,, Comm. Pure Appl. Math., 49 (1996), 365. doi: 10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.0.CO;2-A.

[6]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5.

[7]

M. G. Crandall, M. Kocan and A. Świech, $L^p$-Theory for fully nonlinear uniformly parabolic equations,, Comm. Partial Differential Equations, 25 (2000), 1997. doi: 10.1080/03605300008821576.

[8]

L. Escauriaza, $W^{2, n}$ a priori estimates for solutions to fully non-linear equations,, Indiana Univ. Math. J., 42 (1993), 413. doi: 10.1512/iumj.1993.42.42019.

[9]

E. B. Fabes and D. W. Stroock, The $L^p$-integrability of Green's functions and fundamental solutions for elliptic and parabolic equations,, Duke Math. J., 51 (1984), 997. doi: 10.1215/S0012-7094-84-05145-7.

[10]

P. K. Fok, "Some Maximum Principles and Continuity Estimates for Fully Nonlinear Elliptic Equations of Second Order,'', Ph.D. Thesis, (1996).

[11]

K. Fok, A nonlinear Fabes-Stroock result,, Comm. Partial Differential Equations, 23 (1998), 967. doi: 10.1080/03605309808821375.

[12]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,'', 2nd ed., (1983).

[13]

C. Imbert, Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations,, J. Differential Equations, 250 (2011), 1553. doi: 10.1016/j.jde.2010.07.005.

[14]

S. Koike and A. Świech, Maximum principle for fully nonlinear equations via the iterated comparison function method,, Math. Ann., 339 (2007), 461. doi: 10.1007/s00208-007-0125-z.

[15]

S. Koike and A. Świech, Weak Harnack inequality for fully nonlinear uniformly elliptic PDE with unbounded ingredients,, J. Math. Soc. Japan, 61 (2009), 723. doi: 10.2969/jmsj/06130723.

[16]

N. V. Krylov and M. V. Safonov, An estimate for the probability of a diffusion process hitting a set of positive measure,, (Russian) Dokl. Akad. Nauk SSSR, 245 (1979), 18.

[17]

N. V. Krylov, and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 161.

[18]

M. V. Safonov, Harnack's inequality for elliptic equations and Hölder property of their solutions,, (Russian) in, 96 (1980), 272.

[19]

B. Sirakov, Solvability of uniformly elliptic fully nonlinear PDE,, Arch. Ration. Mech. Anal., 195 (2010), 579. doi: 10.1007/s00205-009-0218-9.

[20]

N. S. Trudinger, Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations,, Invent. Math., 61 (1980), 67. doi: 10.1007/BF01389895.

[21]

N. S. Trudinger, Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations,, Rev. Mat. Iberoamericana, 4 (1988), 453. doi: 10.4171/RMI/80.

[22]

L. Wang, On the regularity of fully nonlinear parabolic equations: I,, Comm. Pure Appl. Math., 45 (1992), 27. doi: 10.1002/cpa.3160450103.

[23]

N. Winter, $W^{2, p}$ and $W^{1, p}$-estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations,, Z. Anal. Anwend., 28 (2009), 129. doi: 10.4171/ZAA/1377.

show all references

References:
[1]

M. E. Amendola, L. Rossi and A. Vitolo, Harnack inequalities and ABP estimates for nonlinear second-order elliptic equations in unbounded domains,, Abstr. Appl. Anal., (2008).

[2]

X. Cabré, On the Alexandroff-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations,, Comm. Pure Appl. Math., 48 (1995), 539. doi: 10.1002/cpa.3160480504.

[3]

L. A. Caffarelli, Interior a priori estimates for solutions of fully non-linear equations,, Ann. Math., 130 (1989), 189. doi: 10.2307/1971480.

[4]

L. A. Caffarelli and X. Cabré, "Fully Nonlinear Elliptic Equations,'', American Mathematical Society, (1995).

[5]

L. A. Caffarelli, M. G. Crandall, M. Kocan and A. Świech, On viscosity solutions of fully nonlinear equations with measurable ingredients,, Comm. Pure Appl. Math., 49 (1996), 365. doi: 10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.0.CO;2-A.

[6]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5.

[7]

M. G. Crandall, M. Kocan and A. Świech, $L^p$-Theory for fully nonlinear uniformly parabolic equations,, Comm. Partial Differential Equations, 25 (2000), 1997. doi: 10.1080/03605300008821576.

[8]

L. Escauriaza, $W^{2, n}$ a priori estimates for solutions to fully non-linear equations,, Indiana Univ. Math. J., 42 (1993), 413. doi: 10.1512/iumj.1993.42.42019.

[9]

E. B. Fabes and D. W. Stroock, The $L^p$-integrability of Green's functions and fundamental solutions for elliptic and parabolic equations,, Duke Math. J., 51 (1984), 997. doi: 10.1215/S0012-7094-84-05145-7.

[10]

P. K. Fok, "Some Maximum Principles and Continuity Estimates for Fully Nonlinear Elliptic Equations of Second Order,'', Ph.D. Thesis, (1996).

[11]

K. Fok, A nonlinear Fabes-Stroock result,, Comm. Partial Differential Equations, 23 (1998), 967. doi: 10.1080/03605309808821375.

[12]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,'', 2nd ed., (1983).

[13]

C. Imbert, Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations,, J. Differential Equations, 250 (2011), 1553. doi: 10.1016/j.jde.2010.07.005.

[14]

S. Koike and A. Świech, Maximum principle for fully nonlinear equations via the iterated comparison function method,, Math. Ann., 339 (2007), 461. doi: 10.1007/s00208-007-0125-z.

[15]

S. Koike and A. Świech, Weak Harnack inequality for fully nonlinear uniformly elliptic PDE with unbounded ingredients,, J. Math. Soc. Japan, 61 (2009), 723. doi: 10.2969/jmsj/06130723.

[16]

N. V. Krylov and M. V. Safonov, An estimate for the probability of a diffusion process hitting a set of positive measure,, (Russian) Dokl. Akad. Nauk SSSR, 245 (1979), 18.

[17]

N. V. Krylov, and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 161.

[18]

M. V. Safonov, Harnack's inequality for elliptic equations and Hölder property of their solutions,, (Russian) in, 96 (1980), 272.

[19]

B. Sirakov, Solvability of uniformly elliptic fully nonlinear PDE,, Arch. Ration. Mech. Anal., 195 (2010), 579. doi: 10.1007/s00205-009-0218-9.

[20]

N. S. Trudinger, Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations,, Invent. Math., 61 (1980), 67. doi: 10.1007/BF01389895.

[21]

N. S. Trudinger, Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations,, Rev. Mat. Iberoamericana, 4 (1988), 453. doi: 10.4171/RMI/80.

[22]

L. Wang, On the regularity of fully nonlinear parabolic equations: I,, Comm. Pure Appl. Math., 45 (1992), 27. doi: 10.1002/cpa.3160450103.

[23]

N. Winter, $W^{2, p}$ and $W^{1, p}$-estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations,, Z. Anal. Anwend., 28 (2009), 129. doi: 10.4171/ZAA/1377.

[1]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[2]

Robert Jensen, Andrzej Świech. Uniqueness and existence of maximal and minimal solutions of fully nonlinear elliptic PDE. Communications on Pure & Applied Analysis, 2005, 4 (1) : 199-207. doi: 10.3934/cpaa.2005.4.187

[3]

Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335

[4]

Chuanqiang Chen. On the microscopic spacetime convexity principle for fully nonlinear parabolic equations II: Spacetime quasiconcave solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4761-4811. doi: 10.3934/dcds.2016007

[5]

Chuanqiang Chen. On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3383-3402. doi: 10.3934/dcds.2014.34.3383

[6]

Luisa Fattorusso, Antonio Tarsia. Regularity in Campanato spaces for solutions of fully nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1307-1323. doi: 10.3934/dcds.2011.31.1307

[7]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[8]

Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707

[9]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 763-800. doi: 10.3934/dcds.2008.21.763

[10]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[11]

Wenmin Sun, Jiguang Bao. New maximum principles for fully nonlinear ODEs of second order. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 813-823. doi: 10.3934/dcds.2007.19.813

[12]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[13]

Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539

[14]

Luca Rossi. Non-existence of positive solutions of fully nonlinear elliptic equations in unbounded domains. Communications on Pure & Applied Analysis, 2008, 7 (1) : 125-141. doi: 10.3934/cpaa.2008.7.125

[15]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[16]

Chiun-Chuan Chen, Li-Chang Hung. An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2018054

[17]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[18]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[19]

Chunhui Qiu, Rirong Yuan. On the Dirichlet problem for fully nonlinear elliptic equations on annuli of metric cones. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5707-5730. doi: 10.3934/dcds.2017247

[20]

Martino Bardi, Paola Mannucci. On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2006, 5 (4) : 709-731. doi: 10.3934/cpaa.2006.5.709

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]