• Previous Article
    A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature
  • CPAA Home
  • This Issue
  • Next Article
    Evaluating cyclicity of cubic systems with algorithms of computational algebra
2012, 11(5): 2005-2021. doi: 10.3934/cpaa.2012.11.2005

Double resonance for Dirichlet problems with unbounded indefinite potential and combined nonlinearities

1. 

Department of Mathematics, Missouri State University, Spring eld, MO 65804, United States

2. 

Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780

Received  May 2011 Revised  December 2011 Published  March 2012

We study a semilinear parametric Dirichlet equation with an indefinite and unbounded potential. The reaction is the sum of a sublinear (concave) term and of an asymptotically linear resonant term. The resonance is with respect to any nonprincipal nonnegative eigenvalue of the differential operator. Using variational methods based on the critical point theory and Morse theory (critical groups), we show that when the parameter $\lambda>0$ is small, the problem has at least three nontrivial smooth solutions.
Citation: Shouchuan Hu, Nikolaos S. Papageorgiou. Double resonance for Dirichlet problems with unbounded indefinite potential and combined nonlinearities. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2005-2021. doi: 10.3934/cpaa.2012.11.2005
References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, "Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equation with Inequality Constraints,", Memoirs of AMS, (2008).

[2]

H. Berestycki and D. G. deFigueiredo, Double resonance is semilinear elliptic problems,, Comm. Partial Diff. Equas., 6 (1981), 91. doi: 10.1080/03605308108820172.

[3]

N. P. Cac, On an elliptic boundary value problem at double resonance,, J. Math. Anal. Appl., 132 (1988), 473. doi: 10.1016/0022-247X(88)90075-3.

[4]

K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems,", Birkhauser, (1993).

[5]

F. Clarke, "Optimization and Nonsmooth Analysis,", Wiley, (1983).

[6]

Y. Deng, S. Peng and L. Wang, Existence of multiple solutions for a nonhomogeneous semilinear elliptic equatio involving critical exponent,, Discrete Contin. Dynam. Systems, 32 (2012), 795.

[7]

D. G. deFigueiredo and J. P. Gossez, Strict monotonicity of eigenvalues and unique continuation,, Comm. Partial Diff. Equas., 17 (1992), 339. doi: 10.1080/03605309208820844.

[8]

M. Filippakis, D. O'Regan and N. S. Papageorgiou, Positive solutions and bifurcation phenomena for nonlinear elliptic equations of Logistic type:The superdiffusive case,, Comm. Pure Appl. Anal., 9 (2010), 1507. doi: 10.3934/cpaa.2010.9.1507.

[9]

M. Filippakis and N. S. Papageorgiou, Multiplicity of solutions for doubly resonant Neumann problem,, Bull. Belgian Math. Soc., 18 (2011), 135.

[10]

Z. Guo, Z. Liu, J. Wei and F. Zhou, Bifurcations of some elliptic problems with a singular nonlinearity via Morse index,, Comm. Pure. Appl. Anal., 10 (2011), 507. doi: 10.3934/cpaa.2011.10.507.

[11]

N. Garofalo and F. H. Lin, Unique continuation for elliptic operators: A geometric variatoinal approach,, Comm. Pure Appl. Math., 40 (1987), 347.

[12]

L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis,", Chapman & Hall/CRC, (2006).

[13]

J. Garcia Melian, J. Rossi and J. Sabina de Lis, A convex-concave problem with a parameter on the boundary condition,, Discrete Contin. Dynam. Systems, 32 (2012), 1095.

[14]

Q. Jiu and J. Su, Existence and multiplicity results for perturbations of the $p$-Laplacian,, J. Math. Anal. Appl., 281 (2003), 587. doi: 10.1016/S0022-247X(03)00165-3.

[15]

Z. Liang and J. Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance,, J. Math. Anal. Appl., 354 (2009), 147. doi: 10.1016/j.jmaa.2008.12.053.

[16]

M. L. Miotto, Multiple solutions for elliptic problems in $R^N$ with critical Spbolev exponent and weight function,, Comm. Pure Appl. Anal., 9 (2010), 233. doi: 10.3934/cpaa.2010.9.233.

[17]

D. Motreanu, D. O'Regan and N. S. Papageorgiou, A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems,, Comm. Pure Appl. Anal., 10 (2011), 1791. doi: 10.3934/cpaa.2011.10.1791.

[18]

N. S. Papageorgiou and S. Th. Kyritsi, "Handbook of Applied Analysis,", Springer, (2009).

[19]

J-M. Rakotoson, Generalized eigenvalue problem for totally discontinuous operator,, Discrete Contin. Dynam. Systems, 28 (2010), 343. doi: 10.3934/dcds.2010.28.343.

[20]

P. Pucci and J. Serrin, "The Maximum Principle,", Birkhauser, (2007).

[21]

S. Robinson, Double resonance in semilinear elliptic boundary value problem over bounded and unbounded domain,, Nonlin. Anal., 21 (1993), 407. doi: 10.1016/0362-546X(93)90125-C.

[22]

R. Showalter, "Hilbert Space Methods for Partial Differential Equations,", Pitman, (1977).

[23]

M. Struwe, "Variational Methods,", Springer, (1990).

[24]

J. Su, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues,, Nonlinear Anal., 48 (2002), 881. doi: 10.1016/S0362-546X(00)00221-2.

[25]

W. Zou, Multiple solutions for elliptic equations with resonance,, Nonlinear Anal., 48 (2002), 363. doi: 10.1016/S0362-546X(00)00190-5.

show all references

References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, "Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equation with Inequality Constraints,", Memoirs of AMS, (2008).

[2]

H. Berestycki and D. G. deFigueiredo, Double resonance is semilinear elliptic problems,, Comm. Partial Diff. Equas., 6 (1981), 91. doi: 10.1080/03605308108820172.

[3]

N. P. Cac, On an elliptic boundary value problem at double resonance,, J. Math. Anal. Appl., 132 (1988), 473. doi: 10.1016/0022-247X(88)90075-3.

[4]

K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems,", Birkhauser, (1993).

[5]

F. Clarke, "Optimization and Nonsmooth Analysis,", Wiley, (1983).

[6]

Y. Deng, S. Peng and L. Wang, Existence of multiple solutions for a nonhomogeneous semilinear elliptic equatio involving critical exponent,, Discrete Contin. Dynam. Systems, 32 (2012), 795.

[7]

D. G. deFigueiredo and J. P. Gossez, Strict monotonicity of eigenvalues and unique continuation,, Comm. Partial Diff. Equas., 17 (1992), 339. doi: 10.1080/03605309208820844.

[8]

M. Filippakis, D. O'Regan and N. S. Papageorgiou, Positive solutions and bifurcation phenomena for nonlinear elliptic equations of Logistic type:The superdiffusive case,, Comm. Pure Appl. Anal., 9 (2010), 1507. doi: 10.3934/cpaa.2010.9.1507.

[9]

M. Filippakis and N. S. Papageorgiou, Multiplicity of solutions for doubly resonant Neumann problem,, Bull. Belgian Math. Soc., 18 (2011), 135.

[10]

Z. Guo, Z. Liu, J. Wei and F. Zhou, Bifurcations of some elliptic problems with a singular nonlinearity via Morse index,, Comm. Pure. Appl. Anal., 10 (2011), 507. doi: 10.3934/cpaa.2011.10.507.

[11]

N. Garofalo and F. H. Lin, Unique continuation for elliptic operators: A geometric variatoinal approach,, Comm. Pure Appl. Math., 40 (1987), 347.

[12]

L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis,", Chapman & Hall/CRC, (2006).

[13]

J. Garcia Melian, J. Rossi and J. Sabina de Lis, A convex-concave problem with a parameter on the boundary condition,, Discrete Contin. Dynam. Systems, 32 (2012), 1095.

[14]

Q. Jiu and J. Su, Existence and multiplicity results for perturbations of the $p$-Laplacian,, J. Math. Anal. Appl., 281 (2003), 587. doi: 10.1016/S0022-247X(03)00165-3.

[15]

Z. Liang and J. Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance,, J. Math. Anal. Appl., 354 (2009), 147. doi: 10.1016/j.jmaa.2008.12.053.

[16]

M. L. Miotto, Multiple solutions for elliptic problems in $R^N$ with critical Spbolev exponent and weight function,, Comm. Pure Appl. Anal., 9 (2010), 233. doi: 10.3934/cpaa.2010.9.233.

[17]

D. Motreanu, D. O'Regan and N. S. Papageorgiou, A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems,, Comm. Pure Appl. Anal., 10 (2011), 1791. doi: 10.3934/cpaa.2011.10.1791.

[18]

N. S. Papageorgiou and S. Th. Kyritsi, "Handbook of Applied Analysis,", Springer, (2009).

[19]

J-M. Rakotoson, Generalized eigenvalue problem for totally discontinuous operator,, Discrete Contin. Dynam. Systems, 28 (2010), 343. doi: 10.3934/dcds.2010.28.343.

[20]

P. Pucci and J. Serrin, "The Maximum Principle,", Birkhauser, (2007).

[21]

S. Robinson, Double resonance in semilinear elliptic boundary value problem over bounded and unbounded domain,, Nonlin. Anal., 21 (1993), 407. doi: 10.1016/0362-546X(93)90125-C.

[22]

R. Showalter, "Hilbert Space Methods for Partial Differential Equations,", Pitman, (1977).

[23]

M. Struwe, "Variational Methods,", Springer, (1990).

[24]

J. Su, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues,, Nonlinear Anal., 48 (2002), 881. doi: 10.1016/S0362-546X(00)00221-2.

[25]

W. Zou, Multiple solutions for elliptic equations with resonance,, Nonlinear Anal., 48 (2002), 363. doi: 10.1016/S0362-546X(00)00190-5.

[1]

Nikolaos S. Papageorgiou, Patrick Winkert. Double resonance for Robin problems with indefinite and unbounded potential. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 323-344. doi: 10.3934/dcdss.2018018

[2]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[3]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control & Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[4]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control & Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[5]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems & Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[6]

Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003

[7]

Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623

[8]

Leszek Gasiński, Nikolaos S. Papageorgiou. Multiplicity of solutions for Neumann problems with an indefinite and unbounded potential. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1985-1999. doi: 10.3934/cpaa.2013.12.1985

[9]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[10]

Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107

[11]

Peng Gao. Carleman estimates and Unique Continuation Property for 1-D viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 169-188. doi: 10.3934/dcds.2017007

[12]

Peng Gao. Unique continuation property for stochastic nonclassical diffusion equations and stochastic linearized Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2018262

[13]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[14]

Claudianor O. Alves, Giovany M. Figueiredo, Marcelo F. Furtado. Multiplicity of solutions for elliptic systems via local Mountain Pass method. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1745-1758. doi: 10.3934/cpaa.2009.8.1745

[15]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[16]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[17]

Henk Bruin, Gregory Clack. Inducing and unique ergodicity of double rotations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4133-4147. doi: 10.3934/dcds.2012.32.4133

[18]

Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu. Nonlinear Dirichlet problems with double resonance. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1147-1168. doi: 10.3934/cpaa.2017056

[19]

Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control & Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165

[20]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]