January  2012, 11(1): 339-364. doi: 10.3934/cpaa.2012.11.339

Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis

1. 

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914, Japan

Received  January 2010 Revised  August 2010 Published  September 2011

We are concerned with the finite-element approximation for the Keller-Segel system that describes the aggregation of slime molds resulting from their chemotactic features. The scheme makes use of a semi-implicit time discretization with a time-increment control and Baba-Tabata's conservative upwind finite-element approximation in order to realize the positivity and mass conservation properties. The main aim is to present error analysis that is an application of the discrete version of the analytical semigroup theory.
Citation: Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure & Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339
References:
[1]

2nd edition, Academic Press, 2003.  Google Scholar

[2]

3rd edition, Springer, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[3]

RAIRO Anal. Numér., 15 (1981), 3-25.  Google Scholar

[4]

BIT Numer. Math., 46 (2006), 249-260. doi: 10.1007/s10543-006-0062-3.  Google Scholar

[5]

Numer. Math., 111 (2008), 169-205. doi: 10.1007/s00211-008-0188-0.  Google Scholar

[6]

Arch. Rational Mech. Anal., 46 (1972), 177-199. doi: 10.1007/BF00252458.  Google Scholar

[7]

Math. Comp., 48 (1987), 521-532. doi: 10.1090/S0025-5718-1987-0878688-2.  Google Scholar

[8]

Numer. Math., 23 (1975), 193-197. doi: 10.1007/BF01400302.  Google Scholar

[9]

J. Sci. Comput., 40 (2009), 211-256. doi: 10.1007/s10915-009-9281-5.  Google Scholar

[10]

Y. Epshteyn and A. Kurganov, New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model,, SIAM J. Numer. Anal., 47 (): 386.  doi: 0.1137/07070423X.  Google Scholar

[11]

J. Math. Anal. Appl., 358 (2009), 136-147. doi: 10.1016/j.jmaa.2009.04.025.  Google Scholar

[12]

Numer. Math., 104 (2006), 457-488. doi: 10.1007/s00211-006-0024-3.  Google Scholar

[13]

Elsevier, 2001.  Google Scholar

[14]

J. Fac. Sci. Univ. Tokyo Sect. I, 15 (1968), 169-177.  Google Scholar

[15]

Pitman, 1985.  Google Scholar

[16]

J. Stat. Phys., 135 (2009), 133-151. doi: 10.1007/s10955-009-9717-1.  Google Scholar

[17]

J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.  Google Scholar

[18]

Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.  Google Scholar

[19]

Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-89.  Google Scholar

[20]

J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[21]

M2AN Math. Model. Numer. Anal., 37 (2003), 617-630. doi: 10.1051/m2an:2003048.  Google Scholar

[22]

Hokkaido Math. J., 31 (2002), 385-429.  Google Scholar

[23]

Springer, 1983.  Google Scholar

[24]

J. Comput. Appl. Math., 169 (2004), 71-85. doi: 10.1016/j.cam.2003.11.003.  Google Scholar

[25]

IMA J. Numer. Anal., 27 (2007), 332-365. doi: 10.1093/imanum/drl018.  Google Scholar

[26]

RIMS Kôkyûroku Bessatsu, Kyoto University, B15 (2009), 125-146.  Google Scholar

[27]

Birkhauser, 2005. doi: 10.1007/0-8176-4436-9.  Google Scholar

[28]

Imperial College Press, 2004.  Google Scholar

show all references

References:
[1]

2nd edition, Academic Press, 2003.  Google Scholar

[2]

3rd edition, Springer, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[3]

RAIRO Anal. Numér., 15 (1981), 3-25.  Google Scholar

[4]

BIT Numer. Math., 46 (2006), 249-260. doi: 10.1007/s10543-006-0062-3.  Google Scholar

[5]

Numer. Math., 111 (2008), 169-205. doi: 10.1007/s00211-008-0188-0.  Google Scholar

[6]

Arch. Rational Mech. Anal., 46 (1972), 177-199. doi: 10.1007/BF00252458.  Google Scholar

[7]

Math. Comp., 48 (1987), 521-532. doi: 10.1090/S0025-5718-1987-0878688-2.  Google Scholar

[8]

Numer. Math., 23 (1975), 193-197. doi: 10.1007/BF01400302.  Google Scholar

[9]

J. Sci. Comput., 40 (2009), 211-256. doi: 10.1007/s10915-009-9281-5.  Google Scholar

[10]

Y. Epshteyn and A. Kurganov, New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model,, SIAM J. Numer. Anal., 47 (): 386.  doi: 0.1137/07070423X.  Google Scholar

[11]

J. Math. Anal. Appl., 358 (2009), 136-147. doi: 10.1016/j.jmaa.2009.04.025.  Google Scholar

[12]

Numer. Math., 104 (2006), 457-488. doi: 10.1007/s00211-006-0024-3.  Google Scholar

[13]

Elsevier, 2001.  Google Scholar

[14]

J. Fac. Sci. Univ. Tokyo Sect. I, 15 (1968), 169-177.  Google Scholar

[15]

Pitman, 1985.  Google Scholar

[16]

J. Stat. Phys., 135 (2009), 133-151. doi: 10.1007/s10955-009-9717-1.  Google Scholar

[17]

J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.  Google Scholar

[18]

Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.  Google Scholar

[19]

Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-89.  Google Scholar

[20]

J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[21]

M2AN Math. Model. Numer. Anal., 37 (2003), 617-630. doi: 10.1051/m2an:2003048.  Google Scholar

[22]

Hokkaido Math. J., 31 (2002), 385-429.  Google Scholar

[23]

Springer, 1983.  Google Scholar

[24]

J. Comput. Appl. Math., 169 (2004), 71-85. doi: 10.1016/j.cam.2003.11.003.  Google Scholar

[25]

IMA J. Numer. Anal., 27 (2007), 332-365. doi: 10.1093/imanum/drl018.  Google Scholar

[26]

RIMS Kôkyûroku Bessatsu, Kyoto University, B15 (2009), 125-146.  Google Scholar

[27]

Birkhauser, 2005. doi: 10.1007/0-8176-4436-9.  Google Scholar

[28]

Imperial College Press, 2004.  Google Scholar

[1]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[2]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[3]

Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2021031

[4]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[5]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[6]

Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, , () : -. doi: 10.3934/era.2021032

[7]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[8]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064

[9]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[10]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[11]

Tong Li, Nitesh Mathur. Riemann problem for a non-strictly hyperbolic system in chemotaxis. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021128

[12]

Haiyan Wang, Jinyan Fan. Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2265-2275. doi: 10.3934/jimo.2020068

[13]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[14]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[15]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[16]

Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021051

[17]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[18]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[19]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[20]

Jie-Wen He, Chi-Chon Lei, Chen-Yang Shi, Seak-Weng Vong. An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 353-362. doi: 10.3934/naco.2020030

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (467)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]