January  2012, 11(1): 339-364. doi: 10.3934/cpaa.2012.11.339

Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis

1. 

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914, Japan

Received  January 2010 Revised  August 2010 Published  September 2011

We are concerned with the finite-element approximation for the Keller-Segel system that describes the aggregation of slime molds resulting from their chemotactic features. The scheme makes use of a semi-implicit time discretization with a time-increment control and Baba-Tabata's conservative upwind finite-element approximation in order to realize the positivity and mass conservation properties. The main aim is to present error analysis that is an application of the discrete version of the analytical semigroup theory.
Citation: Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure & Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339
References:
[1]

R. A. Adams and J. Fournier, "Sobolev Spaces,'', 2nd edition, (2003).   Google Scholar

[2]

S. C. Brenner and L. R. Scott, "The Mathematical Theory of Finite Element Methods,'', 3rd edition, (2008).  doi: 10.1007/978-0-387-75934-0.  Google Scholar

[3]

K. Baba and T. Tabata, On a conservative upwind finite-element scheme for convective diffusion equations,, RAIRO Anal. Num\'er., 15 (1981), 3.   Google Scholar

[4]

M. Boman, Estimates for the $L_2$-projection onto continuous finite element spaces in a weighted $L_p$-norm,, {BIT Numer. Math.}, 46 (2006), 249.  doi: 10.1007/s10543-006-0062-3.  Google Scholar

[5]

A. Chertock and A. Kurganov, A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models,, {Numer. Math.}, 111 (2008), 169.  doi: 10.1007/s00211-008-0188-0.  Google Scholar

[6]

P. G. Ciarlet and R. A. Raviart, General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods,, Arch. Rational Mech. Anal., 46 (1972), 177.  doi: 10.1007/BF00252458.  Google Scholar

[7]

M. Crouzeix and V. Thomée, The stability in $L_p$ and $W^1_p$ of the $L_2$-projection onto finite element function spaces,, Math. Comp., 48 (1987), 521.  doi: 10.1090/S0025-5718-1987-0878688-2.  Google Scholar

[8]

J. Douglas Jr., T. Dupont and L. Wahlbin, The stability in $L_p$ and $W_p^1$ of the $L_2$-projection into finite element function spaces,, Numer. Math., 23 (1975), 193.  doi: 10.1007/BF01400302.  Google Scholar

[9]

Y. Epshteyn and A. Izmirlioglu, Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model,, J. Sci. Comput., 40 (2009), 211.  doi: 10.1007/s10915-009-9281-5.  Google Scholar

[10]

Y. Epshteyn and A. Kurganov, New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model,, SIAM J. Numer. Anal., 47 (): 386.  doi: 0.1137/07070423X.  Google Scholar

[11]

M. Efendiev, E. Nakaguchi and W. L. Wendland, Dimension estimate of the global attractor for a semi-discretized chemotaxis-growth system by conservative upwind finite-element scheme,, J. Math. Anal. Appl., 358 (2009), 136.  doi: 10.1016/j.jmaa.2009.04.025.  Google Scholar

[12]

F. Filbet, A finite volume scheme for Patlak-Keller-Segel chemotaxis model,, Numer. Math., 104 (2006), 457.  doi: 10.1007/s00211-006-0024-3.  Google Scholar

[13]

H. Fujita, N. Saito and T. Suzuki, "Operator Theory and Numerical Methods,'', Elsevier, (2001).   Google Scholar

[14]

D. Fujiwara, $L^p$-theory for characterizing the domain of the fractional powers of $-\Delta $ in the half space,, J. Fac. Sci. Univ. Tokyo Sect. I, 15 (1968), 169.   Google Scholar

[15]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains,'', Pitman, (1985).   Google Scholar

[16]

J. Haškovec and C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system,, J. Stat. Phys., 135 (2009), 133.  doi: 10.1007/s10955-009-9717-1.  Google Scholar

[17]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[18]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I,, {Jahresber. Deutsch. Math.-Verein.}, 105 (2003), 103.   Google Scholar

[19]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences II,, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51.   Google Scholar

[20]

F. F. Keller and L. A. Segel, Initiation on slime mold aggregation viewed as instability,, J. Theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[21]

A. Marrocco, Numerical simulation of chemotactic bacteria aggregation via mixed finite-elements,, M2AN Math. Model. Numer. Anal., 37 (2003), 617.  doi: 10.1051/m2an:2003048.  Google Scholar

[22]

E. Nakaguchi and Y. Yagi, Fully discrete approximation by Galerkin Runge-Kutta methods for quasilinear parabolic systems,, Hokkaido Math. J., 31 (2002), 385.   Google Scholar

[23]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,'', Springer, (1983).   Google Scholar

[24]

N. Saito, A holomorphic semigroup approach to the lumped mass finite element method,, J. Comput. Appl. Math., 169 (2004), 71.  doi: 10.1016/j.cam.2003.11.003.  Google Scholar

[25]

N. Saito, Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis,, IMA J. Numer. Anal., 27 (2007), 332.  doi: 10.1093/imanum/drl018.  Google Scholar

[26]

N. Saito, Conservative numerical schemes for the Keller-Segel system and numerical results,, RIMS K\^oky\^uroku Bessatsu, B15 (2009), 125.   Google Scholar

[27]

T. Suzuki, "Free Energy and Self-Interacting Particles,'', Birkhauser, (2005).  doi: 10.1007/0-8176-4436-9.  Google Scholar

[28]

T. Suzuki and T. Senba, "Applied Analysis: Mathematical Methods in Natural Science,'', Imperial College Press, (2004).   Google Scholar

show all references

References:
[1]

R. A. Adams and J. Fournier, "Sobolev Spaces,'', 2nd edition, (2003).   Google Scholar

[2]

S. C. Brenner and L. R. Scott, "The Mathematical Theory of Finite Element Methods,'', 3rd edition, (2008).  doi: 10.1007/978-0-387-75934-0.  Google Scholar

[3]

K. Baba and T. Tabata, On a conservative upwind finite-element scheme for convective diffusion equations,, RAIRO Anal. Num\'er., 15 (1981), 3.   Google Scholar

[4]

M. Boman, Estimates for the $L_2$-projection onto continuous finite element spaces in a weighted $L_p$-norm,, {BIT Numer. Math.}, 46 (2006), 249.  doi: 10.1007/s10543-006-0062-3.  Google Scholar

[5]

A. Chertock and A. Kurganov, A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models,, {Numer. Math.}, 111 (2008), 169.  doi: 10.1007/s00211-008-0188-0.  Google Scholar

[6]

P. G. Ciarlet and R. A. Raviart, General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods,, Arch. Rational Mech. Anal., 46 (1972), 177.  doi: 10.1007/BF00252458.  Google Scholar

[7]

M. Crouzeix and V. Thomée, The stability in $L_p$ and $W^1_p$ of the $L_2$-projection onto finite element function spaces,, Math. Comp., 48 (1987), 521.  doi: 10.1090/S0025-5718-1987-0878688-2.  Google Scholar

[8]

J. Douglas Jr., T. Dupont and L. Wahlbin, The stability in $L_p$ and $W_p^1$ of the $L_2$-projection into finite element function spaces,, Numer. Math., 23 (1975), 193.  doi: 10.1007/BF01400302.  Google Scholar

[9]

Y. Epshteyn and A. Izmirlioglu, Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model,, J. Sci. Comput., 40 (2009), 211.  doi: 10.1007/s10915-009-9281-5.  Google Scholar

[10]

Y. Epshteyn and A. Kurganov, New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model,, SIAM J. Numer. Anal., 47 (): 386.  doi: 0.1137/07070423X.  Google Scholar

[11]

M. Efendiev, E. Nakaguchi and W. L. Wendland, Dimension estimate of the global attractor for a semi-discretized chemotaxis-growth system by conservative upwind finite-element scheme,, J. Math. Anal. Appl., 358 (2009), 136.  doi: 10.1016/j.jmaa.2009.04.025.  Google Scholar

[12]

F. Filbet, A finite volume scheme for Patlak-Keller-Segel chemotaxis model,, Numer. Math., 104 (2006), 457.  doi: 10.1007/s00211-006-0024-3.  Google Scholar

[13]

H. Fujita, N. Saito and T. Suzuki, "Operator Theory and Numerical Methods,'', Elsevier, (2001).   Google Scholar

[14]

D. Fujiwara, $L^p$-theory for characterizing the domain of the fractional powers of $-\Delta $ in the half space,, J. Fac. Sci. Univ. Tokyo Sect. I, 15 (1968), 169.   Google Scholar

[15]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains,'', Pitman, (1985).   Google Scholar

[16]

J. Haškovec and C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system,, J. Stat. Phys., 135 (2009), 133.  doi: 10.1007/s10955-009-9717-1.  Google Scholar

[17]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[18]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I,, {Jahresber. Deutsch. Math.-Verein.}, 105 (2003), 103.   Google Scholar

[19]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences II,, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51.   Google Scholar

[20]

F. F. Keller and L. A. Segel, Initiation on slime mold aggregation viewed as instability,, J. Theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[21]

A. Marrocco, Numerical simulation of chemotactic bacteria aggregation via mixed finite-elements,, M2AN Math. Model. Numer. Anal., 37 (2003), 617.  doi: 10.1051/m2an:2003048.  Google Scholar

[22]

E. Nakaguchi and Y. Yagi, Fully discrete approximation by Galerkin Runge-Kutta methods for quasilinear parabolic systems,, Hokkaido Math. J., 31 (2002), 385.   Google Scholar

[23]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,'', Springer, (1983).   Google Scholar

[24]

N. Saito, A holomorphic semigroup approach to the lumped mass finite element method,, J. Comput. Appl. Math., 169 (2004), 71.  doi: 10.1016/j.cam.2003.11.003.  Google Scholar

[25]

N. Saito, Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis,, IMA J. Numer. Anal., 27 (2007), 332.  doi: 10.1093/imanum/drl018.  Google Scholar

[26]

N. Saito, Conservative numerical schemes for the Keller-Segel system and numerical results,, RIMS K\^oky\^uroku Bessatsu, B15 (2009), 125.   Google Scholar

[27]

T. Suzuki, "Free Energy and Self-Interacting Particles,'', Birkhauser, (2005).  doi: 10.1007/0-8176-4436-9.  Google Scholar

[28]

T. Suzuki and T. Senba, "Applied Analysis: Mathematical Methods in Natural Science,'', Imperial College Press, (2004).   Google Scholar

[1]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[4]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[5]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[10]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[13]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[14]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[15]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[16]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[17]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[18]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[19]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[20]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (387)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]