2012, 11(1): 47-60. doi: 10.3934/cpaa.2012.11.47

Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion

1. 

GREMAQ, CNRS UMR 5604, INRA UMR 1291, Université de Toulouse, 21 Allée de Brienne, F--31000 Toulouse, France

2. 

Institut de Mathématiques de Toulouse, CNRS UMR 5219, Université de Toulouse, F–31062 Toulouse cedex 9

Received  November 2009 Revised  October 2010 Published  September 2011

For a specific choice of the diffusion, the parabolic-elliptic Patlak-Keller-Segel system with non-linear diffusion (also referred to as the quasi-linear Smoluchowski-Poisson equation) exhibits an interesting threshold phenomenon: there is a critical mass $M_c>0$ such that all solutions with initial data of mass smaller or equal to $M_c$ exist globally while the solution blows up in finite time for a large class of initial data with mass greater than $M_c$. Unlike in space dimension $2$, finite mass self-similar blowing-up solutions are shown to exist in space dimension $d\geq 3$.
Citation: Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47
References:
[1]

A. Blanchet, E. Carlen and J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model,, preprint, ().

[2]

A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical two-dimensional Patlak-Keller-Segel model,, Comm. Pure Appl. Math., 61 (2008), 1449.

[3]

A. Blanchet, J. A. Carrillo and Ph. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions,, Calc. Var. Partial Differential Equations, 35 (2009), 133.

[4]

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions,, Electron. J. Differential Equations, 44 (2006).

[5]

P.-H. Chavanis and C. Sire, Anomalous diffusion and collapse of self-gravitating Langevin particles in $D$ dimensions,, Phys. Rev. E, 69 (2004).

[6]

J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in $R^2$,, C. R. Math. Acad. Sci. Paris, 339 (2004), 611.

[7]

P. L. Felmer, A. Quaas, M. Tang and J. Yu, Monotonicity properties for ground states of the scalar field equation,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 25 (2008), 105.

[8]

R. H. Fowler, Further studies of Emden's and similar differential equations,, Quart. J. Math., 2 (1931), 259.

[9]

M. A. Herrero, E. Medina and J. J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system,, Nonlinearity, 10 (1997), 1739.

[10]

M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model,, Math. Ann., 306 (1996), 583.

[11]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I,, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103.

[12]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819.

[13]

E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.

[14]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u - u + u^p=0$ in $R^N$,, Arch. Rational Mech. Anal., 105 (1989), 243.

[15]

E. H. Lieb and M. Loss, "Analysis,'', Graduate Studies in Mathematics \textbf{14}, 14 (2001).

[16]

P. M. Lushnikov, Critical chemotactic collapse,, Phys. Lett. A, 374 (2010), 1678.

[17]

T. Nagai, Behavior of solutions to a parabolic-elliptic system modelling chemotaxis,, J. Korean Math. Soc., 37 (2000), 721.

[18]

Y. Naito and T. Suzuki, Self-similarity in chemotaxis systems,, Colloq. Math., 111 (2008), 11.

[19]

C. S. Patlak, Random walk with persistence and external bias,, Bull. Math. Biophys., 15 (1953), 311.

[20]

J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations,, Indiana Univ. Math. J., 49 (2000), 897.

[21]

C. Sire and P.-H. Chavanis, Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions,, Phys. Rev. E, 66 (2002).

[22]

C. Sire and P.-H. Chavanis, Critical dynamics of self-gravitating Langevin particles and bacterial populations,, Phys. Rev. E, 78 (2008).

[23]

D. Slepčev and M. C. Pugh, Selfsimilar blowup of unstable thin-film equations,, Indiana Univ. Math. J., 54 (2005), 1697.

[24]

Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems,, Differential Integral Equations, 19 (2006), 841.

[25]

Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models,, Adv. Differential Equations, 12 (2007), 121.

[26]

T. Suzuki and R. Takahashi, Degenerate parabolic equation with critical exponent derived from the kinetic theory, I, generation of the weak solution,, Adv. Differential Equations, 14 (2009), 433.

[27]

M. Tang, Uniqueness of positive radial solutions for $\Delta u - u + u^p=0$ on an annulus,, J. Differential Equations, 189 (2003), 148.

show all references

References:
[1]

A. Blanchet, E. Carlen and J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model,, preprint, ().

[2]

A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical two-dimensional Patlak-Keller-Segel model,, Comm. Pure Appl. Math., 61 (2008), 1449.

[3]

A. Blanchet, J. A. Carrillo and Ph. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions,, Calc. Var. Partial Differential Equations, 35 (2009), 133.

[4]

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions,, Electron. J. Differential Equations, 44 (2006).

[5]

P.-H. Chavanis and C. Sire, Anomalous diffusion and collapse of self-gravitating Langevin particles in $D$ dimensions,, Phys. Rev. E, 69 (2004).

[6]

J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in $R^2$,, C. R. Math. Acad. Sci. Paris, 339 (2004), 611.

[7]

P. L. Felmer, A. Quaas, M. Tang and J. Yu, Monotonicity properties for ground states of the scalar field equation,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 25 (2008), 105.

[8]

R. H. Fowler, Further studies of Emden's and similar differential equations,, Quart. J. Math., 2 (1931), 259.

[9]

M. A. Herrero, E. Medina and J. J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system,, Nonlinearity, 10 (1997), 1739.

[10]

M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model,, Math. Ann., 306 (1996), 583.

[11]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I,, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103.

[12]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819.

[13]

E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.

[14]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u - u + u^p=0$ in $R^N$,, Arch. Rational Mech. Anal., 105 (1989), 243.

[15]

E. H. Lieb and M. Loss, "Analysis,'', Graduate Studies in Mathematics \textbf{14}, 14 (2001).

[16]

P. M. Lushnikov, Critical chemotactic collapse,, Phys. Lett. A, 374 (2010), 1678.

[17]

T. Nagai, Behavior of solutions to a parabolic-elliptic system modelling chemotaxis,, J. Korean Math. Soc., 37 (2000), 721.

[18]

Y. Naito and T. Suzuki, Self-similarity in chemotaxis systems,, Colloq. Math., 111 (2008), 11.

[19]

C. S. Patlak, Random walk with persistence and external bias,, Bull. Math. Biophys., 15 (1953), 311.

[20]

J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations,, Indiana Univ. Math. J., 49 (2000), 897.

[21]

C. Sire and P.-H. Chavanis, Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions,, Phys. Rev. E, 66 (2002).

[22]

C. Sire and P.-H. Chavanis, Critical dynamics of self-gravitating Langevin particles and bacterial populations,, Phys. Rev. E, 78 (2008).

[23]

D. Slepčev and M. C. Pugh, Selfsimilar blowup of unstable thin-film equations,, Indiana Univ. Math. J., 54 (2005), 1697.

[24]

Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems,, Differential Integral Equations, 19 (2006), 841.

[25]

Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models,, Adv. Differential Equations, 12 (2007), 121.

[26]

T. Suzuki and R. Takahashi, Degenerate parabolic equation with critical exponent derived from the kinetic theory, I, generation of the weak solution,, Adv. Differential Equations, 14 (2009), 433.

[27]

M. Tang, Uniqueness of positive radial solutions for $\Delta u - u + u^p=0$ on an annulus,, J. Differential Equations, 189 (2003), 148.

[1]

Tian Xiang. On effects of sampling radius for the nonlocal Patlak-Keller-Segel chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4911-4946. doi: 10.3934/dcds.2014.34.4911

[2]

Jacob Bedrossian, Nancy Rodríguez. Inhomogeneous Patlak-Keller-Segel models and aggregation equations with nonlinear diffusion in $\mathbb{R}^d$. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1279-1309. doi: 10.3934/dcdsb.2014.19.1279

[3]

Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897

[4]

Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002

[5]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[6]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[7]

Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817

[8]

Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101

[9]

F. Berezovskaya, G. Karev. Bifurcations of self-similar solutions of the Fokker-Plank equations. Conference Publications, 2005, 2005 (Special) : 91-99. doi: 10.3934/proc.2005.2005.91

[10]

Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation. Networks & Heterogeneous Media, 2012, 7 (4) : 857-879. doi: 10.3934/nhm.2012.7.857

[11]

Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703

[12]

Hyungjin Huh. Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations & Control Theory, 2018, 7 (1) : 53-60. doi: 10.3934/eect.2018003

[13]

Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036

[14]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic & Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[15]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[16]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[17]

Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471

[18]

Meiyue Jiang, Juncheng Wei. $2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 785-803. doi: 10.3934/dcds.2016.36.785

[19]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[20]

Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]